×

Thermomechanical states of gyrotropic micropolar solids. (Russian. English summary) Zbl 07845752

Summary: The paper is devoted to problems of modeling heat conduction processes in micropolar elastic solids, all thermomechanical states of which may be sensible to mirror reflections of three-dimensional space. A new variant of the heat conduction theory is developed in terms of the heat fluxes treated as pseudovectors of algebraic weight \(+1\) making their similar to the pseudovector of spinor displacements known from previous discussions. Constitutive pseudoinvariants (at least some of them) have odd negative weights (for example, thermal conductivity coefficient and specific heat). Having choosing elements of volume and area as natural known from the classical field theory formulations and considered as pseudoinvariants of weight \(-1\), the variant of theory is proposed. An absolute contravariant vector represents translational displacements and a contravariant pseudovector of weight \(+1\) does spinor displacements. As a result, heat flux, force stress tensor, mass density and specific heat can be treated as pseudotensor quantities of odd weights. The Helmholtz free energy per unit natural volume element is used as the thermodynamic potential with the functional arguments: temperature, symmetrical parts and accompanying vectors of the linear asymmetric strain tensor and wryness pseudotensor. The principle of absolute invariance of absolute thermodynamic temperature is proposed and discussed. A nonlinear heat conduction equation is obtained and linearized.

MSC:

15A72 Vector and tensor algebra, theory of invariants
53A45 Differential geometric aspects in vector and tensor analysis
74D05 Linear constitutive equations for materials with memory

References:

[1] Lakes R., “Elastic and viscoelastic behavior of chiral materials”, Int. J. Mech. Sci., 43:7 (2001), 1579-1589 · Zbl 1049.74012 · doi:10.1016/S0020-7403(00)00100-4
[2] Mackay T. G., Lakhtakia A., “Negatively refracting chiral metamaterials: a review”, SPIE Reviews, 1:1 (2010), 018003 · doi:10.1117/6.0000003
[3] Tomar S. K., Khurana A., “Wave propagation in thermo-chiral elastic medium”, Appl. Math. Model., 37:22 (2013), 9409-9418 · Zbl 1449.74013 · doi:10.1016/j.apm.2013.04.029
[4] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 504-517 (In Russian) · Zbl 1424.74008 · doi:10.14498/vsgtu1635
[5] Neuber H., “Über Probleme der Spannungskonzentration im Cosserat-Körper”, Acta Mechanica, 2 (1966), 48-69 · Zbl 0161.21804 · doi:10.1007/BF01176729
[6] Neuber H., “On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua”, Applied Mechanics, eds. H. Görtler, Springer, Berlin, Heidelberg, 1966, 153-158 · Zbl 0151.36602 · doi:10.1007/978-3-662-29364-5_16
[7] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399-412 (In Russian) · doi:10.32326/1814-9146-2020-82-4-399-412
[8] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424-444 · Zbl 1474.74008 · doi:10.14498/vsgtu1792
[9] Murashkin E. V., Radayev Yu. N., “On the theory of linear hemitropic micropolar media”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2020, no. 4(46), 16-24 (In Russian) · doi:10.37972/chgpu.2020.89.81.031
[10] Murashkin E. V., Radayev Yu. N., “Coupled thermoelasticity of hemitropic media. Pseudotensor formulation”, Mech. Solids, 58:3 (2023), 802-813 · Zbl 1527.74015 · doi:10.3103/s0025654423700127
[11] Murashkin E. V., Radayev Yu. N., “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity”, Lobachevskii J. Math., 44:6 (2023), 2440-2449 · Zbl 1525.74046 · doi:10.1134/S1995080223060392
[12] Truesdell C., Toupin R., “The classical field theories”, Encyclopedia of Physics, v. III/1, Principles of Classical Mechanics and Field Theory, eds. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226-902 · Zbl 0118.39702 · doi:10.1007/978-3-642-45943-6_2
[13] Schouten J. A., Tensor Analysis for Physicist, Clarendon Press, Oxford, 1951, 434 pp. · Zbl 0044.38302
[14] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, John Wiley & Sons, 1964, 361 pp. · Zbl 0121.38204
[15] Synge J. L., Schild A., Tensor Calculus, Dover Publ., New York, 1978, xi+324 pp.
[16] Das A. J., Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, Springer Science & Business Media, Berlin, 2007, xii+290 pp. · Zbl 1138.53001 · doi:10.1007/978-0-387-69469-6
[17] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964, 429 pp. · Zbl 0128.24601
[18] Veblen O., Thomas T. Y., “Extensions of relative tensors”, Trans. Amer. Math. Soc., 26:3 (1924), 373-377 · JFM 50.0502.04 · doi:10.1090/S0002-9947-1924-1501284-6
[19] Veblen O., Invariants of Quadratic Differential Forms, Cambridge Univ. Press, Cambridge, 1927, viii+102 pp. · JFM 53.0681.01
[20] Cosserat E., Cosserat F., Théorie des Corps déformables, A. Herman et Fils, Paris, 1909, vi+226 pp. · JFM 40.0862.02
[21] Nowacki W., Theory of Micropolar Elasticity, Springer, Wien, 1972, 285 pp. · doi:10.1007/978-3-7091-2720-9
[22] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. · Zbl 0604.73020
[23] Dyszlewicz J., Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, Springer, Berlin, Heidelberg, 2004, xv+345 pp. · Zbl 1057.74003 · doi:10.1007/978-3-540-45286-7
[24] Besdo D., “Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums”, Acta Mechanica, 20:1 (1974), 105-131 · Zbl 0294.73003 · doi:10.1007/BF01374965
[25] Murashkin E. V., Radayev Yu. N., “Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space”, Uchen. Zap. Kazan. Univ. Ser. Fiz.-Matem. Nauki, 165:4 (2023) (In Russian)
[26] Murashkin E. V., Radayev Yu. N., “Schouten”s force stress tensor and affinor densities of positive weight”, Problems of Strength and Plasticity, 84:4 (2022), 545-558 (In Russian) · doi:10.32326/1814-9146-2022-84-4-545-558
[27] Murashkin E. V., Radayev Yu. N., “The Schouten force stresses in continuum mechanics formulations”, Mech. Solids, 58:1 (2023), 153-160 · Zbl 1517.74002 · doi:10.3103/s0025654422700029
[28] Kovalev V. A., Radayev Yu. N., Elementy teorii polia: variatsionnye simmetrii i geometricheskie invarianty [Elements of Field Theory: Variational Symmetries and Geometric Invariants], Fizmatlit, Moscow, 2009, 160 pp. (In Russian)
[29] Kovalev V. A., Radayev Yu. N., Volnovye zadachi teorii polia i termomekhanika [Wave Problems of Field Theory and Thermomechanics], Saratov Univ., Saratov, 2010, 328 pp. (In Russian)
[30] Murashkin E. V., Radayev Yu. N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 776-786 (In Russian) · Zbl 1499.15089 · doi:10.14498/vsgtu1883
[31] Murashkin E. V., Radayev Yu. N., “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space”, Mech. Solids, 57:2 (2022), 205-213 · Zbl 1519.74001 · doi:10.3103/s0025654422020108
[32] Finikov S. P., Metod vneshnikh form Kartana v differentsial’noi geometrii [Cartan’s Method of External Forms in Differential Geometry], GITTL, Leningrad, Moscow, 1948, 432 pp. (In Russian)
[33] Cartan H., Differentsial’noe ischislenie. Differentsial’nye formy [Differential Calculus. Differential Forms], Mir, Moscow, 1971, 392 pp. (In Russian) · Zbl 0223.35004
[34] Efimov N. V., Vvedenie v teoriiu vneshnikh form [Introduction to the Theory of External Forms], Nauka, Moscow, 1977, 88 pp. (In Russian)
[35] Pars L. A., Analiticheskaia dinamika [Analytical Dynamics], Nauka, Moscow, 1971, 636 pp. (In Russian) · Zbl 0228.70001
[36] Radayev Yu. N., “Tensors with constant components in the constitutive equations of hemitropic micropolar solids”, Mech. Solids, 58:5 (2023), 1517-1527 · Zbl 07792090 · doi:10.3103/S0025654423700206
[37] Murashkin E. V., Radayev Yu. N., “Algebraic algorithm for systematically reducing one-point pseudotensors to absolute tensors”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 1(51), 17-26 (In Russian) · doi:10.37972/chgpu.2022.51.1.002
[38] Rozenfel’d B. A., Mnogomernye prostranstva [Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Russian)
[39] Murashkin E. V., Radayev Y. N., “Covariantly constant tensors in Euclidean spaces. Elements of the theory”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2(52), 106-115 (In Russian) · doi:10.37972/chgpu.2022.52.2.012
[40] Murashkin E. V., Radayev Yu. N., “Covariantly constant tensors in Euclidean spaces. Applications to continuum mechanics”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2022, no. 2(52), 118-127 (In Russian) · doi:10.37972/chgpu.2022.52.2.013
[41] Poincaré H., “Sur les residus des integrales doubles”, Acta math, 6 (1887), 321-380 · JFM 19.0275.01
[42] Poincaré H., “Analysis situs”, J. Éc. Politech., 2:1 (1895), 1-123 (In French) · JFM 26.0541.07
[43] Murashkin E. V., “On the formulation of boundary conditions in problems of synthesis of woven 3D materials”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2021, no. 1(47), 114-121 (In Russian) · doi:10.37972/chgpu.2021.1.47.010
[44] Jeffreys H., Cartesian Tensors, Cambridge Univ. Press, Cambridge, 1931, 105 pp. · JFM 57.0974.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.