×

A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity. (English) Zbl 1525.74046

Summary: Originating micropolar microrotation vectors and pseudovectors of presumably integer weights is discussed. Overwhelming majority of publications on micropolar thermoelasticity deals with absolute tensors formulations, minority is devoted to applications of positive weight microrotation contravariant pseudovector to formulations of micropolar thermoelasticity. A negative weight microrotation pseudovector is not actually employed for derivation of hemitropic thermoelastic equations as it may be concluded from a literary search. The present paper is devoted to this issue. Thermodynamic state potentials for hemitropic thermoelastic continuum are proposed in terms of asymmetric strain tensor, wryness pseudotensor of negative weight and the entropy. In virtue of contravariant algebraic treatment of translations and microrotations general algebraically consistent coordinate representations for constitutive fourth rank tensors and pseudotensors are considered in terms of the metric tensor and the constitutive hemitropic pseudoinvariants, then replaced by the conventional constitutive pseudoscalars. Energy and entropy balance equations are obtained to provide thermodynamic consistency of the proposed model. Coupled hemitropic thermoelastic equations are represented in terms of contravariant displacement vector and negative weight covariant microratation pseudovector.

MSC:

74F05 Thermal effects in solid mechanics
74B99 Elastic materials
74A35 Polar materials
74A15 Thermodynamics in solid mechanics
Full Text: DOI

References:

[1] Lurie, A. I., Analytical Mechanics (1961), Moscow: Fizmatlit, Moscow
[2] Pars, L. A., A Treatise on Analytical Dynamics (1965), London: Heinemann, London · Zbl 0125.12004
[3] Gurevich, G. B., Foundations of the Theory of Algebraic Invariants (1964), Groningen: Noordhoff, Groningen · Zbl 0128.24601
[4] Rosenfeld, B. A., Multidimensional Spaces (1966), Moscow: Nauka, Moscow
[5] Besdo, D., Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums, Acta Mech., 20, 105-131 (1974) · Zbl 0294.73003 · doi:10.1007/BF01374965
[6] Nowacki, W., Dynamic Problems of Thermoelasticity (1972), Dordrecht: Springer, Dordrecht · Zbl 0086.18803
[7] Nowacki, W., Theory of Asymmetric Elasticity (1986), Oxford: Pergamon, Oxford · Zbl 0604.73020
[8] Neuber, H., Über probleme der spannungskonzentration im Cosserat-Körper, Acta Mech., 2, 48-69 (1966) · Zbl 0161.21804 · doi:10.1007/BF01176729
[9] H. Neuber, ‘‘On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua,’’ Appl. Mech., 153-158 (1966). doi:10.1007/978-3-662-29364-5_16 · Zbl 0151.36602
[10] H. Neuber, ‘‘On the effect of stress concentration in Cosserat continua,’’ in Mechanics of Generalized Continua, Proceedings of the Conference (Springer, Berlin, 1968), pp. 109-113. doi:10.1007/978-3-662-30257-6_13 · Zbl 0198.58505
[11] J. Dyszlewicz, Micropolar Theory of Elasticity (Springer, Berlin, 2004). doi:10.1007/978-3-540-45286-7 · Zbl 1057.74003
[12] Kovalev, V. A.; Murashkin, E. V.; Radayev, Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 24, 752-761 (2020) · Zbl 1463.74019 · doi:10.14498/vsgtu1799
[13] Murashkin, E. V.; Radayev, Yu. N., “Pseudovector hyperbolic differential operators of hemitropic micropolar elasticity,” Vestn. Chuvach. Ped. Univ, Ser.: Mekh. Ogran. Sost., 4, 59-72 (2021) · doi:10.37972/chgpu.2021.50.4.005
[14] Murashkin, E. V.; Radayev, Yu. N., “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 25, 457-474 (2021) · Zbl 1499.15088
[15] Murashkin, E. V.; Radayev, Yu. N., “On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 26, 592-602 (2022) · Zbl 1513.15047 · doi:10.14498/vsgtu1941
[16] Yu. N. Radayev, ‘‘Two-point rotations in geometry of finite deformations,’’ in Solid Mechanics, Theory of Elasticity and Creep. Advanced Structured Materials, Ed. by H. Altenbach, S. M. Mkhitaryan, V. Hakobyan, and A. V. Sahakyan (Cham, Springer, 2023), pp. 275-283. doi:10.1007/978-3-031-18564-9_20
[17] Kovalev, V. A.; Murashkin, E. V.; Radayev, Yu. N., “A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua,” Izv. Saratov Univ, Math. Mech. Inform., 14, 77-87 (2014) · Zbl 1326.74025 · doi:10.18500/1816-9791-2014-14-1-77-87
[18] Kovalev, V. A.; Radayev, Yu. N., “On frame indifferent Lagrangians of micropolar thermoelastic continuum,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 19, 325-340 (2015) · Zbl 1413.74009 · doi:10.14498/vsgtu1413
[19] Radayev, Yu. N.; Kovalev, V. A., “On plane thermoelastic waves in hemitropic micropolar continua,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 23, 464-474 (2019) · Zbl 1449.74025 · doi:10.14498/vsgtu1689
[20] Radayev, Yu. N.; Murashkin, E. V., Pseudotensor formulation of the mechanics of hemitropic micropolar media, Probl. Prochn. Plastich., 82, 399-412 (2020) · doi:10.32326/1814-9146-2020-82-4-399-412
[21] Radayev, Yu. N.; Murashkin, E. V.; Nesterov, T. K., “Pseudotensor formalism for Neuber’s micropolar elasticity theory,” Vestn. Chuvash. Ped. Univ, Ser.: Mekh. Ogran. Sost., 4, 73-81 (2021) · doi:10.37972/chgpu.2021.50.4.006
[22] Murashkin, E. V.; Radayev, Yu. N., “Direct, inverse and mirror wave modes of coupled displacements and microrotations monochromatic plane waves in hemitropic micropolar media,” Vestn. Chuvash. Ped. Univ, Ser.: Mekh. Ogran. Sost., 2, 115-127 (2021) · doi:10.37972/chgpu.2021.48.2.014
[23] Murashkin, E. V.; Radayev, Yu. N., On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space, Mech. Solids, 57, 205-213 (2022) · Zbl 1519.74001 · doi:10.3103/S0025654422020108
[24] Lurie, A. I., Non-Linear Theory of Elasticity (1990), Amsterdam: North-Holland, Amsterdam · Zbl 0715.73017
[25] G. A. Maugin, Non-Classical Continuum Mechanics (Springer, Singapore, 2017). doi:10.1007/978-981-10-2434-4 · Zbl 1346.76001
[26] Holzapfel, G. A., Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science (2000), New York: Wiley, New York · Zbl 0980.74001
[27] A. Goriely, The Mathematics and Mechanics of Biological Growth (Springer, New York, 2017). doi:10.1007/978-0-387-87710-5 · Zbl 1398.92003
[28] R. W. Ogden and G. A. Holzapfel, Mechanics of Biological Tissue (Springer, Berlin, 2006). doi:10.1007/3-540-31184-X
[29] Radayev, Yu. N., Kinematic equations along characteristics in compressible flows on the facets of an arbitrary piecewise linear yield criterion, Mech. Solids, 55, 737-740 (2020) · doi:10.3103/S0025654420300032
[30] Jeffreys, H., Cartesian Tensors (1931), Cambridge: Cambridge Univ. Press, Cambridge · JFM 57.0974.01
[31] Synge, J. L.; Schild, A., Tensor Calculus (1978) · Zbl 0403.53008
[32] Radayev, Yu. N., Spatial Problem of the Mathematical Theory of Plasticity (2006), Samara: Samar. Gos. Univ., Samara
[33] Radayev, Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 22, 504-517 (2018) · Zbl 1424.74008 · doi:10.14498/vsgtu1635
[34] Murashkin, E. V.; Radayev, Yu. N., “On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-, Mat. Nauki, 25, 457-474 (2021) · Zbl 1499.15088 · doi:10.14498/vsgtu1870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.