×

Existence of solutions of fractional hybrid differential equations via measure of noncompactness. (English) Zbl 07845362

Summary: With the help of a newly defined contraction operator, we establish a fixed point theorem and study the solvability of fractional hybrid differential equations in a Banach space. We provide examples to support our findings.

MSC:

47H10 Fixed-point theorems
45D05 Volterra integral equations

References:

[1] M. I. Abbas and M. A. Ragusa, “On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function”, Symmetry 13:2 (2021), 264. Digital Object Identifier: 10.3390/sym13020264 Google Scholar: Lookup Link · doi:10.3390/sym13020264
[2] R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed point theory and applications, Cambridge Tracts in Mathematics 141, Cambridge University Press, 2001. Digital Object Identifier: 10.1017/CBO9780511543005 Google Scholar: Lookup Link · doi:10.1017/CBO9780511543005
[3] A. Amara, “Existence results for hybrid fractional differential equations with three-point boundary conditions”, AIMS Math. 5:2 (2020), 1074-1088. Digital Object Identifier: 10.3934/math.2020075 Google Scholar: Lookup Link · Zbl 1484.34013 · doi:10.3934/math.2020075
[4] A. H. Ansari, “Note on \[\phi - \psi\] contractive type mappings and related fixed point”, pp. 377-380 in Proceedings of the 2nd Regional Conference on Mathematics and Applications (Tehran, Iran, 2014).
[5] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. · Zbl 0441.47056
[6] S. S. Chang, Y. J. Cho, and N. J. Huang, “Coupled fixed point theorems with applications”, J. Korean Math. Soc. 33:3 (1996), 575-585. · Zbl 0859.47037
[7] G. Darbo, “Punti uniti in trasformazioni a codominio non compatto”, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. · Zbl 0064.35704
[8] M. A. Darwish and K. Sadarangani, “Existence of solutions for hybrid fractional pantograph equations”, Appl. Anal. Discrete Math. 9:1 (2015), 150-167. Digital Object Identifier: 10.2298/AADM150126002D Google Scholar: Lookup Link · Zbl 1488.34422 · doi:10.2298/AADM150126002D
[9] A. Das, B. Hazarika, and P. Kumam, “Some new generalization of Darbo’s fixed point theorem and its application on integral equations”, Mathematics 7:3 (2019), art. id. 214. Digital Object Identifier: 10.3390/math7030214 Google Scholar: Lookup Link · doi:10.3390/math7030214
[10] A. Das, B. Hazarika, and B. C. Deuri, “Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space”, Fract. Calc. Appl. Anal. 25:5 (2022), 2113-2125. Digital Object Identifier: 10.1007/s13540-022-00084-6 Google Scholar: Lookup Link · Zbl 1509.47110 · doi:10.1007/s13540-022-00084-6
[11] C. Derbazi, H. Hammouche, M. Benchohra, and Y. Zhou, “Fractional hybrid differential equations with three-point boundary hybrid conditions”, Adv. Difference Equ. (2019), art. id. 125. Digital Object Identifier: 10.1186/s13662-019-2067-7 Google Scholar: Lookup Link · Zbl 1459.34014 · doi:10.1186/s13662-019-2067-7
[12] D. Devi and J. Borah, “Existence of solutions for a nonlinear nonlocal hybrid functional fractional differential equation”, Rocky Mountain J. Math. 53:5 (2023), 1459-1467. Digital Object Identifier: 10.1216/rmj.2023.53.1459 Google Scholar: Lookup Link · Zbl 1531.34073 · doi:10.1216/rmj.2023.53.1459
[13] B. C. Dhage and N. S. Jadhav, “Basic results in the theory of hybrid differential equations with linear perturbations of second type”, Tamkang J. Math. 44:2 (2013), 171-186. Digital Object Identifier: 10.5556/j.tkjm.44.2013.1086 Google Scholar: Lookup Link · Zbl 1321.34074 · doi:10.5556/j.tkjm.44.2013.1086
[14] B. C. Dhage and V. Lakshmikantham, “Basic results on hybrid differential equations”, Nonlinear Anal. Hybrid Syst. 4:3 (2010), 414-424. Digital Object Identifier: 10.1016/j.nahs.2009.10.005 Google Scholar: Lookup Link · Zbl 1206.34020 · doi:10.1016/j.nahs.2009.10.005
[15] M. S. Khan, M. Swaleh, and S. Sessa, “Fixed point theorems by altering distances between the points”, Bull. Austral. Math. Soc. 30:1 (1984), 1-9. Digital Object Identifier: 10.1017/S0004972700001659 Google Scholar: Lookup Link · Zbl 0553.54023 · doi:10.1017/S0004972700001659
[16] C. Kuratowski, “Sur les espaces complets”, Fund. Math. 15:1 (1930), 301-309. Digital Object Identifier: 10.4064/fm-15-1-301-309 Google Scholar: Lookup Link · JFM 56.1124.04 · doi:10.4064/fm-15-1-301-309
[17] F. Li, L. Zhang, and H. Wang, “On fractional hybrid non-linear differential equations involving three mixed fractional orders with boundary conditions”, Symmetry 14:6 (2022), art. id. 1189. Digital Object Identifier: 10.3390/sym14061189 Google Scholar: Lookup Link · doi:10.3390/sym14061189
[18] N. Li, H. Gu, and Y. Chen, “BVP for Hadamard sequential fractional hybrid differential inclusions”, J. Funct. Spaces (2022), art. id. 4042483. Digital Object Identifier: 10.1155/2022/4042483 Google Scholar: Lookup Link · Zbl 1494.34080 · doi:10.1155/2022/4042483
[19] H. Lu, S. Sun, D. Yang, and H. Teng, “Theory of fractional hybrid differential equations with linear perturbations of second type”, Bound. Value Probl. (2013), art. id. 23. Digital Object Identifier: 10.1186/1687-2770-2013-23 Google Scholar: Lookup Link · Zbl 1296.34025 · doi:10.1186/1687-2770-2013-23
[20] A. Salem and M. Alnegga, “Measure of noncompactness for hybrid Langevin fractional differential equations”, Axioms 9:2 (2020), art. id. 59. Digital Object Identifier: 10.3390/axioms9020059 Google Scholar: Lookup Link · doi:10.3390/axioms9020059
[21] I. Slimane, Z. Dahmani, J. J. Nieto, and T. Abdeljawad, “Existence and stability for a nonlinear hybrid differential equation of fractional order via regular Mittag-Leffler kernel”, Math. Methods Appl. Sci. 46:7 (2023), 8043-8053. Digital Object Identifier: 10.1002/mma.7349 Google Scholar: Lookup Link · Zbl 1538.34031 · doi:10.1002/mma.7349
[22] J. You and Z. Han, “Analysis of fractional hybrid differential equations with impulses in partially ordered Banach algebras”, Nonlinear Anal. Model. Control 26:6 (2021), 1071-1086. Digital Object Identifier: 10.15388/namc.2021.26.24939 Google Scholar: Lookup Link · Zbl 1490.34068 · doi:10.15388/namc.2021.26.24939
[23] M. B. Zada, M. Sarwar, and H. K. Nashine, “Solution of infinite system of ordinary differential equations and fractional hybrid differential equations via measure of noncompactness”, Journal of Taibah University for Science 13:1 (2019), 1119-1127. Digital Object Identifier: 10.1080/16583655.2019.1686862 Google Scholar: Lookup Link · doi:10.1080/16583655.2019.1686862
[24] Y. Zhao, S. Sun, Z. Han, and Q. Li, “Theory of fractional hybrid differential equations”, Comput. Math. Appl. 62:3 (2011), 1312-1324. Digital Object Identifier: 10.1016/j.camwa.2011.03.041 Google Scholar: Lookup Link · Zbl 1228.45017 · doi:10.1016/j.camwa.2011.03.041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.