×

Existence of an infinite system of fractional hybrid differential equations in a tempered sequence space. (English) Zbl 1509.47110

Summary: In this article, the existence of the solution of infinite system of fractional hybrid differential equations with initial conditions by reducing them to integral equations in the space \(C(I, m(\theta )^{\beta })\) is discussed based on the Darbo fixed point theorem. In the end, a suitable example to strengthen the result is included.

MSC:

47N20 Applications of operator theory to differential and integral equations
26A33 Fractional derivatives and integrals
45J05 Integro-ordinary differential equations
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Aghajani, A.; Pourhadi, E.; Trujillo, JJ, Application of measure of noncompactness to a Cauchy problem for fractional differential equation in Banach spaces, Fract. Calc. Appl. Anal., 16, 4, 962-977 (2003) · Zbl 1312.47095 · doi:10.2478/s13540-013-0059-y
[2] Aghajani, A.; Pourhadi, E., Application of measure of noncompactness to \(\ell_1\)-solvability of infinite systems of second order differential equations, Bull. Belg. Math. Soc. Simon Stevin, 22, 105-118 (2015) · Zbl 1329.47082 · doi:10.36045/bbms/1426856862
[3] Alotaibi, A.; Mursaleen, M.; Mohiuddine, SA, Application of measure of noncompactness to infinite system of linear equations in sequence spaces, Bull. Iranian Math. Soc., 41, 519-527 (2015) · Zbl 1373.46002
[4] Banaś, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker, New York (1980) · Zbl 0441.47056
[5] Banaś, J.; Krajewska, M., Existence of solutions for infinite systems of differential equations in spaces of tempered sequences, Electron. J. Diff. Equ., 2017, 60, 1-28 (2017) · Zbl 1370.34114
[6] Banaś, J.; Lecko, M., Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 137, 363-375 (2001) · Zbl 0997.34048 · doi:10.1016/S0377-0427(00)00708-1
[7] Banaś, J.; Mursaleen, M., Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations (2014), New Delhi: Springer, New Delhi · Zbl 1323.47001 · doi:10.1007/978-81-322-1886-9
[8] Cuesta, E.; Codes, JF; Hamza, MH, Image processing by means of a linear integro-differential equation, Visualization Imaging and Image Processing 2003, Paper 91 (2003), Calgary: ACTA Press, Calgary
[9] Darbo, G., Punti uniti in trasformazioni a codominio non compatto (Italian), Rend. Sem. Mat. Univ. Padova, 24, 84-92 (1955) · Zbl 0064.35704
[10] Das, A.; Hazarika, B.; Arab, R.; Agarwal, RP; Nashine, HK, Solvability of infinite systems of fractional differential equations in the space of tempered sequences, Filomat, 33, 17, 5519-5530 (2019) · Zbl 1499.45023 · doi:10.2298/FIL1917519D
[11] Deimling, K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Mathematics, vol. 596. Springer, Berlin (1977) · Zbl 0361.34050
[12] Deng, W., Short memory principal and a predictor corrector approach for fractional differential equations, J. Comput. Appl. Math., 206, 174-188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[13] Dhage, BC; Jadhav, N., Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math., 44, 2, 171-186 (2013) · Zbl 1321.34074 · doi:10.5556/j.tkjm.44.2013.1086
[14] Dhage, BC; Lakshmikantham, V., Basic results on hybrid differential equations, Nonlinear Anal. Hybrid Syst., 4, 3, 414-424 (2010) · Zbl 1206.34020 · doi:10.1016/j.nahs.2009.10.005
[15] Gabeleh, M., Malkowsky, E., Mursaleen, M., Rakoc̈ević, V.: A new survey of measures of noncompactness and their applications. Axioms 11, 299 (2022). DOI: doi:10.3390/axioms11060299
[16] Haque, I., Ali, J., Mursaleen, M.: Solvability of implicit fractional order integral equation in \(\ell_p, (1\le p<\infty )\) space via generalized Darbo’s fixed point theorem. J. Funct. Spaces 2022, Article ID 1674243, 8 pages, (2022). DOI: doi:10.1155/2022/1674243 · Zbl 1491.45018
[17] Hazarika, B.; Srivastava, HM; Arab, R.; Rabbani, M., Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl. Math. Comput., 360, 131-146 (2019) · Zbl 1428.45003
[18] Kuratowski, K., Sur les espaces complets, Fund. Math., 15, 301-309 (1930) · JFM 56.1124.04 · doi:10.4064/fm-15-1-301-309
[19] Lu, H., Sun, S., Yang, D., Teng, H.: Theory of fractional hybrid differential equations with linear perturbations of second type. Bound. Value Probl. 2013, Article 23, (2013). DOI:doi:10.1186/1687-2770-2013-23 · Zbl 1296.34025
[20] Mehravarana, H., Kayvanlooa, H.A., Allahyaria, R.: Solvability of infinite systems of fractional differential equations in the space of tempered sequence space \(m^\beta (\phi ).\) Int. J. Nonlinear Anal. Appl. 13(1), 1023-1034 (2022). DOI: doi:10.22075/ijnaa.2021.23299.2515
[21] Mohiuddine, S.A., Srivastava, H.M., Alotaibi, A.: Application of measures of noncompactness to the infinite system of second-order differential equations in \(\ell_p\) spaces. Adv. Difference Equ. 2016, 2016:317 (2016). DOI: doi:10.1186/s13662-016-1016-y · Zbl 1419.47009
[22] Mursaleen, M., Application of measure of noncompactness to infinite system of differential equations, Canad. Math. Bull., 56, 388-398 (2013) · Zbl 1275.47133 · doi:10.4153/CMB-2011-170-7
[23] Mursaleen, M., Alotaibi, A.: Infinite system of differential equations in some BK-spaces. Abstr. Appl. Anal. 2012, Article ID 863483, 20 pages (2012). DOI: doi:10.1155/2012/863483 · Zbl 1258.28006
[24] Mursaleen, M.; Bilal, B.; Rizvi, SMH, Applications of measure of noncompactness to infinite system of fractional differential equations, Filomat, 31, 11, 3421-3432 (2017) · Zbl 1499.34105 · doi:10.2298/FIL1711421M
[25] Mursaleen, M.; Mohiuddine, SA, Applications of measures of noncompactness to the infinite system of differential equations in \(\ell_p\) spaces, Nonlinear Anal., 75, 4, 2111-2115 (2012) · Zbl 1256.47060 · doi:10.1016/j.na.2011.10.011
[26] Mursaleen, M.; Rizvi, SMH; Samet, B., Solvability of a class of boundary value problems in the space of convergent sequences, Appl. Anal., 97, 11, 1829-1845 (2018) · Zbl 1396.93063 · doi:10.1080/00036811.2017.1343464
[27] Oguzt Poreli, MN, On the neural equations of Cowan and Stein, Utilitas Math., 2, 305-315 (1972) · Zbl 0277.34013
[28] Pederson, S.; Sambandham, M., Numerical solution of hybrid fractional differential equations, Commun. Appl. Anal., 12, 4, 429-440 (2008) · Zbl 1182.26016
[29] Podlubny, I.: Fractional order systems and fractional order controllers. Technical Report UEF-03-94, Institute of Experimental Physics, Slovak Acad. Sci. (1994) · Zbl 1056.93542
[30] Rabbani, M.; Das, A.; Hazarika, B.; Arab, R., Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations, Chaos Solitons Fractals, 140 (2020) · Zbl 1502.47067 · doi:10.1016/j.chaos.2020.110221
[31] Sargent, WLC, Some sequence spaces related to the \(\ell_p\) spaces, J. Lond. Math. Soc., 35, 2, 161-171 (1960) · Zbl 0090.03703 · doi:10.1112/jlms/s1-35.2.161
[32] Zhao, Y.; Sun, S.; Han, Z.; Li, Q., Theory of fractional hybrid differential equations, Comput. Math. Appl., 62, 3, 1312-1324 (2011) · Zbl 1228.45017 · doi:10.1016/j.camwa.2011.03.041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.