×

MHD slip flow of a Casson hybrid nanofluid over a stretching/shrinking sheet with thermal radiation. (English) Zbl 07843045

Summary: Current article investigates the non-Newtonian MHD flow and heat transfer of copper-alumina/water hybrid nanofluid due to permeable stretching/shrinking surface with full slip model. The system of nonlinear partial differential equations was transformed to a system of ordinary differential equations via proper similarity variables. On obtaining exact solutions in terms of incomplete gamma function, the impact of various physical parameters was discussed for velocity and temperature distributions. There is an establishment that, the temperature distribution and thermal boundary layer increase as the one of the parameters viz, magnetic parameter, Biot number, radiation parameter is increasing. Additionally, transverse and axial velocities of the nanofluid are more than that of hybrid nanofluid in stretching case and reverse in shrinking case. However, the temperature for hybrid nanofluid will be more than that of nanofluid in stretching case and reverse in shrinking case. Further, present analysis reveals that stronger mass transpiration is needed for steady flow of MHD Casson liquid. Moreover, the skin friction will enhance with the mass suction and MHD in case of stretching sheet, where there is declines in rate of heat transfer. There is an increase in the skin friction as the intensity of suction parameter increases, accordingly which progress the enhancement of the heat transfer and deteriorate the temperature of the hybrid nanofluid. The consequence has possible industrial and technological applications in fluid based systems involving shrinkable/stretchable materials, MHD flow meters and pumps, plastic films drawing. Hybrid nanoparticles increase the rate of cooling, so become significant in machining and manufacturing.

MSC:

76Mxx Basic methods in fluid mechanics
76Wxx Magnetohydrodynamics and electrohydrodynamics
80Axx Thermodynamics and heat transfer
Full Text: DOI

References:

[1] F. Jamil, H.M. Ali, Applications of hybrid nanofluids in different fields, in “Hybrid Nanofluids for Convection Heat Transfer” edited by H.M. Ali, (2020), pp. 215-254.
[2] Aly, E. H.; Pop, I., MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition, Int. J. Numer. Meth. Heat Fluid Flow, 29, 3012-3038, (2019)
[3] Zainal, N. A.; Nazar, R.; Naganthran, K.; Pop, I., Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity, Alex. Eng. J., 60, 915-926, (2020)
[4] Aly, E. H.; Pop, I., Merkin and Needham wall jet problem for hybrid nanofluids with thermal energy, Euro. J. Mech. B/Fluids, 83, 195-204, (2020) · Zbl 1477.76099
[5] Waini, I.; Ishak, A.; Pop, I., Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid, Alex. Eng. J., 59, 1881-1891, (2020)
[6] Waini, I.; Ishak, A.; Pop, I., Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid, Int. J. Heat Mass Transf., 136, 288-297, (2019)
[7] Aly, E. H.; Pop, I., MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid, Powder Tech., 367, 192-205, (2020)
[8] E.H. Aly, A. Ebaid, MHD Marangoni boundary layer problem for hybrid nanofluids with thermal radiation, Int. J. Numer. Meth. Heat Fluid Flow, (2020), in press, 10.1108/HFF-05-2020-0245.
[9] Sarkar, J.; Ghosh, P.; Adil, A., A review on hybrid nanofluids: recent research, development and applications, Renew. Sustain. Energy Rev., 43, 164-177, (2015)
[10] Sundar, L. S.; Sharma, K. V.; Singh, M. K.; Sousa, A. C.M., Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor - a review, Renew. Sustain. Energy Rev., 68, 185-198, (2017)
[11] Huminic, G.; Huminic, A., Hybrid nanofluids for heat transfer applications - a state-of-the-art review, Int. J. Heat Mass Transf., 125, 82-103, (2018)
[12] Mahian, O.; Kolsi, L.; Amani, M.; Estelle, P.; Ahmadi, G.; Kleinstreuer, C.; Marshalli, J. S.; Siavashi, M.; Taylor, R. A.; Niazmand, H.; Wongwises, S.; Hayat, T.; Kolanjiyil, A.; Kasaeian, A.; Pop, I., Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory, Phys. Rep., 790, 1-48, (2019)
[13] Mahian, O.; Kolsi, L.; Amani, M.; Estelle, P.; Ahmadi, G.; Kleinstreuer, C.; Marshalli, J. S.; Siavashi, M.; Taylor, R. A.; Niazmand, H.; Wongwises, S.; Hayat, T.; Kolanjiyil, A.; Kasaeian, A.; Pop, I., Recent advances in modeling and simulation of nanofluid flows-part II: applications, Phys. Rep., 791, 1-52, (2019)
[14] Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A. J., Conjugate natural convection flow of Ag-MgO/water hybrid nanofluid in a square cavity, J. Thermal Anal. Calorimetry, 139, 2321-2336, (2020)
[15] Rao, A. S.; Sainath, S.; Rajendra, P.; Ramu, G., Mathematical modeling of hydromagnetic Casson non-Newtonian nanofluid convection slip flow from an isothermal sphere, Nonlinear Eng., 8, 645-660, (2019)
[16] Samrat, S. P.; Sulochana, C.; Ashwinkumar, G. P., Impact of thermal radiation on an unsteady Casson nanofluid flow over a stretching surface, Int. J. Appl. Comput. Math., 5, 31, (2019) · Zbl 1430.76036
[17] Ashwinkumar, G. P.; Sulochana, C., Effect of radiation absorption and buoyancy force on the MHD mixed convection flow of Casson nanofluid embedded with Al_50Cu_50 alloy nanoparticles, Multidiscip. Model. Mater. Struct., 14, 1082-1100, (2018)
[18] Mahabaleshwar, U. S.; Vinay Kumar, P. N.; Sheremet, Mikhail, Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction, SpringerPlus, 5, 1901, (2016)
[19] Souayeh, B.; Reddy, M. G.; Sreenivasulu, P.; Poornima, T.; Gorji, M. R.; Alarifi, I. M., Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle, J. Mol. Liq., 284, 163-174, (2019)
[20] W. Jamshed, A. Aziz, Cattaneo Christov based study of TiO2CuO/EG Casson hybrid nanofluid flow over a stretching surface with entropy generation, Appl. Nanosci., doi:10.1007/s13204-018-0820-y.
[21] Mahabaleshwar, U. S.; Sarris, I. E.; Lorenzini, G., Effect of radiation and Navier’s slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media, Int. J. Heat Mass Transf., 127, 1327-1337, (2018)
[22] Nanjundaswamy, V. K.P.; Mahabaleshwar, U. S.; Mallikarjun, P.; Nezhad, M. M.; Lorenzini, G., Casson liquid flow due to porous stretching sheet with suction/injection, Defect Diffus. Forum, 388, 420-432, (2018)
[23] Mahabaleshwar, U. S.; Rekha, M. B.; Vinay Kumar, P. N.; Selimefendigil, F.; Sakanaka, P. H.; Lorenzini, G.; Nayakar, S. N.R., Mass transfer characteristics of MHD Casson fluid flow past stretching/shrinking sheet, J. Eng. Thermophys., 29, 1-18, (2020)
[24] Vinay Kumar, P. N.; Mahabaleshwar, U. S.; Nagaraju, K. R.; Mousavi Nezhad, M.; Daneshkhah, A., Mass transpiration in magneto-hydrodynamic boundary layer flow over a superlinear stretching sheet embedded in porous medium with slip, J. Porous Media, 22, 8, 1015-1025, (2019)
[25] Sankar, D. S.; Lee, U., Two-fluid Casson model for pulsatile blood flow through stenosed arteries: a theoretical model, Commun.. Nonlinear Sci. Numer. Simul., 15, 2086-2097, (2010) · Zbl 1222.76125
[26] Mukhopadhyay, S.; Vajravelu, K., Diffusion of chemically reactive species in Casson fluid flow over an unsteady permeable stretching surface, J. Hydrodyn., 25, 591-598, (2013)
[27] Abolbashari, M. H.; NavidFreidoonimehr, F. Nazari; Rashidi, M. M., Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface, Adv. Powder Tech., 26, 542-552, (2015)
[28] Abdul Hakeem, A. K.; Renuka, P.; Ganesh, N. V.; Kalaivanan, R.; Ganga, B., Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer, J. Mag. Mag. Mater., 401, 354-361, (2016)
[29] Kumaran, G.; Sandeep, N., Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion, J. Mol. Liq., 233, 262-269, (2017)
[30] Mahabaleshwar, U. S.; Nagaraju, K. R.; Kumar, P. N.V.; Nadagouda, M. N.; Bennacer, R.; Sheremet, M. A., Effects of Dufour and Soret mechanisms on MHD mixed convective-radiative non-Newtonian liquid flow and heat transfer over a porous sheet, Therm. Sci. Eng. Progress, 16, Article 100459 pp., (2020)
[31] Mahabaleshwar, U. S.; Nagaraju, K. R.; Sheremet, M. A.; Baleanu, D.; Lorenzini, E., Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip, J. Phys., 63, 130-137, (2020) · Zbl 07829559
[32] Benos, L. T.; Nagaraju, K. R.; Mahabaleshwar, U. S.; Prasad, M. S.; Sarris, I. E.; Lorenzini, G., Magnetohydrodynamic and radiation effects on the heat transfer of a continuously stretching/shrinking sheet with mass transpiration of the horizontal boundary, Chin. J. Phys., 72, 700-715, (2021) · Zbl 07836280
[33] Aly, E. H., Dual exact solutions of graphene-water nanofluid flow over stretching/shrinking sheet with suction/injection and heat source/sink: critical values and regions with stability, Powder Tech., 342, 528-544, (2019)
[34] Aly, E. H., Catalogue of existence of the multiple physical solutions of hydromagnetic flow over a stretching/shrinking sheet for viscoelastic second-grade and Walter’s B fluids, Phys. Scr., 94, Article 105223 pp., (2019)
[35] Nasir, Saleem; Shah, Zahir; khan, Waris, Hussam Alrabaiah5, Saeed Islam and Saima Naz Khan, MHD stagnation point flow of hybrid nanofluid over a permeable cylinder with homogeneous and heterogeneous reaction, Phys. Scr., 96, 3, Article 035201 pp., (2021)
[36] Saeed, Anwar; Alsubie, Abdelaziz; Kumam, Poom; Nasir, Saleem; Gul, Taza; Kumam, Wiyada, Blood based hybrid nanofluid flow together with electromagnetic field and couple stresses, Sci. Rep., 11, 12865, (2021)
[37] Alghamdi, Wajdi; Nullah, Taza Gul Mehranullah; Rehman, Ali; Nasir, S.; Saeed, A.; Bonyah, E., Boundary layer stagnation point flow of the Casson hybrid nanofluid over an unsteady stretching surface, AIP Adv., 11, Article 015016 pp., (2021)
[38] Usafzai, W. K.; Aly, E. H.; Alshomrani, A. S.; ZakaUllah, M., Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump, Int. Commun. Heat Mass Transf., 131, Article 105831 pp., (2022)
[39] Devi, S. A.; Devi, S. S., Numerical investigation of hydromagnetic hybrid Cu-Al_2O_3/water nanofluid flow over a permeable stretching sheet with suction, Int. J. Nonlinear Sci. Numer. Simul., 17, 249-257, (2016)
[40] Aly, E. H., Existence of the multiple exact solutions for nanofluids flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects, Powder Tech., 301, 760-781, (2016)
[41] Mahabaleshwar, U. S.; Vinay Kumar, PN; Nagaraju, KR; Bognár, G., A new exact solution for the flow of a fluid through porous media for a variety of boundary conditions, Fluids, 4, 3, 125, (2020)
[42] Vinay Kumar, P. N.; Mahabaleshwar, U. S.; Nagaraju, K. R.; Nezhad, M. M.; Daneshkhah, A., Mass transpiration in magneto-hydrodynamic boundary layer flow over a superlinear stretching sheet embedded in porous medium with slip, J. Porous Media, 22, 8, 1015-1025, (2019)
[43] Mahabaleshwar, U. S.; Sarris, I. E.; Lorenzini, G., Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media, Int. J. Heat Mass Transf., 127, 1327-1337, (2019)
[44] Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Kelson, N. A., An MHD Navier’s slip flow over axisymmetric linear stretching sheet using differential transform method, Int. J. Appl. Comput. Math., 4, 1, 1-13, (2019) · Zbl 1386.35347
[45] Siddheshwar, P. G.; Chan, A.; Mahabaleshwar, U. S., Suction-induced magnetohydrodynamics of a viscoelastic fluid over a stretching surface within a porous medium, IMA J. Appl. Math., 79, 3, 445-458, (2014) · Zbl 1321.35174
[46] Cortell, R., Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition, Appl. Math. Comput., 206, 832-840, (2008) · Zbl 1153.76025
[47] Mahabaleshwar, U. S.; Nagaraju, K. R.; Nadagouda, M. N.; Bennacer, R.; Baleanu, D., An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation & transpiration, Therm. Sci. Eng. Progress, 16, Article 100379 pp., (2020)
[48] Mahabaleshwar, U. S.; Sarris, I. E.; Hill, A. A.; Lorenzini, Giulio, Ioan Pop, An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer, IJHMT, 105, 157-167, (2017)
[49] Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Nadagoud, M. N.; Bennacer, R.; Sheremet, M. A., Effects of Dufour and Soret mechanisms on MHD mixed convective-radiation non-Newtonian liquid flow and heat transfer over a porous sheet, Therm. Sci. Eng. Progress, 19, Article 100459 pp., (2019)
[50] Aly, E. H.; Rosca, A. V.; Rosca, N. C.; Pop, I., Convective heat transfer of a hybrid nanofluid over a nonlinearly stretching surface with radiation effect, Mathematics, 9, 2220, (2021)
[51] Fang, T.; Zhang, J., Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Commun. Nonlinear Sci. Numer. Simul., 14, 2853-2857, (2009) · Zbl 1221.76142
[52] Bhattacharyya, K., MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation, J. Thermodyn., 9, Article 169674 pp., (2013)
[53] Nadeem, S.; Haq, R. U.; Akbar, N. S.; Khan, Z. H., MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alex. Eng. J., 52, 4, 577-582, (2013)
[54] Mabood, F.; Das, K., Outlining the impact of melting on MHD Casson fluid flow pasta stretching sheet in a porous medium with radiation, Heliyon, 5, 01216, (2019)
[55] Takhara, HS; Chamkha, AJ; Nath, G., Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species, Int. J. Eng. Sci., 38, 1303-1314, (2000) · Zbl 1210.76205
[56] Anuar, Nur Syazana; Bachok, Norfifah, Ioan Pop, Influence of MHD hybrid ferrofluid flow on exponentially stretching/shrinking surface with heat source/sink under stagnation point region, Mathematics, 9, 2932, (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.