×

Impact of thermal radiation on an unsteady Casson nanofluid flow over a stretching surface. (English) Zbl 1430.76036

Nanofluids are suspensions of solid nanoparticles in fluids with quite low thermal conductivity. Coexistence of two media with different properties within the same physical system gives the opportunity to manage the system’s “mean” behaviour by applying external fields, changing external temperature, etc. This is important for the production of new materials with controlled properties.
In the paper, the flow of a Casson nanofluid through a stretching porous plate is considered. An external magnetic field is acting in the direction orthogonal to the flow. Temperature and concentration of nanoparticles oscillate in-phase, and the amplitudes of these oscillations are governed by a small non-dimensional parameter \(\varepsilon\). Due to the combination of many effects (viscous and inertial flow, non-uniform temperature distribution, magnetic field, the presence of solid phase), the system’s behaviour is described by several similarity criterions: Grashof, Sherwood, Nusselt numbers and so on.
The mathematical model of this system is investigated by means of perturbation methods. The asymptotic expansion is performed with respect to the above-mentioned \(\varepsilon\).
The dependence of the nanofluid’s behaviour on the listed parameters is depicted on numerous plots.

MSC:

76A05 Non-Newtonian fluids
76T20 Suspensions
76W05 Magnetohydrodynamics and electrohydrodynamics
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Crane, L.J.: Flow past a stretching plate. ZAMP 21, 645-647 (1970)
[2] Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet. Can. J. Chem. Eng. 55, 744-746 (1977) · doi:10.1002/cjce.5450550619
[3] Wang, C.Y.: The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915-1917 (1984) · Zbl 0545.76033 · doi:10.1063/1.864868
[4] Siddheshwar, P.G., Mahabaleswar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Nonlinear. Mech. 40, 807-820 (2005) · Zbl 1349.76906 · doi:10.1016/j.ijnonlinmec.2004.04.006
[5] Partha, M.K., Murthy, P.V.S.N., Rajasekhar, G.P.: Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass Transf. 41, 360-366 (2005) · doi:10.1007/s00231-004-0552-2
[6] Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864-873 (2007) · Zbl 1112.76022
[7] Abel, M.S., Mahesha, N., Tawade, J.: Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Appl. Math. Model. 33, 3430-3441 (2009) · Zbl 1205.76040 · doi:10.1016/j.apm.2008.11.021
[8] Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Non-Newtonian Flows, FED-231/MD-66, pp. 99-105 (1995)
[9] Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240-250 (2006) · doi:10.1115/1.2150834
[10] Vajravelu, K., Prasad, K.V., Lee, J., Lee, C., Pop, I., Gorder, R.A.: Convective heat transfer in the flow of viscous Ag – water and Cu – water nanofluids over a stretching surface. Int. J. Therm. Sci. 50, 843-851 (2011) · doi:10.1016/j.ijthermalsci.2011.01.008
[11] Gireesha, B.J., Manjunatha, S., Bagewadi, C.S.: Unsteady hydromagnetics boundary layer flow and heat transfer of dusty fluid over a stretching sheet. Afrika Mat. 23, 229-241 (2012) · Zbl 1263.76075 · doi:10.1007/s13370-011-0031-0
[12] El-aziz, M.A.: Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J. Egypt. Math. Soc. 21, 385-394 (2013) · Zbl 1426.76025 · doi:10.1016/j.joems.2013.02.010
[13] Abbas, Z., Sheikh, M., Sajid, M.: Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Can. J. Phys. 92, 1113-1123 (2014) · doi:10.1139/cjp-2013-0329
[14] Madhu, M., Kishan, N.: Magnetohydrodynamic mixed convection stagnation-point flow of a power-law non-Newtonian nanofluid towards a stretching surface with radiation and heat source/sink. J. Fluids (2015). https://doi.org/10.1155/2015/634186 · Zbl 1401.76088 · doi:10.1155/2015/634186
[15] Sulochana, C., Sandeep, N.: Stagnation point flow and heat transfer behavior of Cu – water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0451-5 · doi:10.1007/s13204-015-0451-5
[16] Babu, M.J., Sandeep, N.: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Adv. Powder Technol. 27, 2039-2050 (2016) · doi:10.1016/j.apt.2016.07.013
[17] Sulochana, C., Ashwinkumar, G.P., Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Eur. Phys. J. Plus 132, 387-400 (2017) · doi:10.1140/epjp/i2017-11633-3
[18] Mahmood, T., Shahzad, A., Iqbal, Z., Ahmed, J., Khan, M.: Computational modelling on 2D magnetohydrodynamic flow of Sisko fluid over a time dependent stretching surface. Results Phys. 7, 832-842 (2017) · doi:10.1016/j.rinp.2017.01.024
[19] Sulochana, C., Samrat, S.P., Sandeep, N.: Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating. Int. J. Mech. Sci. (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.006 · doi:10.1016/j.ijmecsci.2017.05.006
[20] Sulochana, C., Samrat, S.P., Sandeep, N.: Magnetohydrodynamic radiative nanofluid flow over a rotating surface with Soret effect. Multidiscip. Model. Mater. Struct. (2017). https://doi.org/10.1108/mmms-05-2017-0042 · doi:10.1108/mmms-05-2017-0042
[21] Sulochana, C., Samrat, S.P., Sandeep, N.: Thermal radiation effect on MHD nanofluid flow over a stretching sheet. Int. J. Eng. Res. Africa 23, 89-102 (2016). https://doi.org/10.4028/www.scientific.net/JERA.23.89 · doi:10.4028/www.scientific.net/JERA.23.89
[22] Sulochana, C., Samrat, S.P., Sandeep, N.: Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of Soret and thermal radiation. Int. J. Eng. Res. Africa 20, 112-129 (2016). https://doi.org/10.4028/www.scientific.net/JERA.20.112 · doi:10.4028/www.scientific.net/JERA.20.112
[23] Pham, T.V., Mitsoulis, E.: Entry and exit flows of Casson fluids. Can. J. Chem. Eng. 72, 1080-1084 (1994) · doi:10.1002/cjce.5450720619
[24] Nadeem, S., Haq, R.U., Lee, C.: MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci. Iran. 19, 1550-1553 (2012) · doi:10.1016/j.scient.2012.10.021
[25] Shehzad, S.A., Hayat, T., Qasim, M., Asghar, S.: Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz. J. Chem. Eng. 30, 187-195 (2013) · doi:10.1590/S0104-66322013000100020
[26] Mukhopadhyay, S., Ranjan, P., Bhattacharyya, K., Layek, G.C.: Casson fluid flow over an unsteady stretching surface. Ain Shams Eng. J. 4, 933-938 (2013) · doi:10.1016/j.asej.2013.04.004
[27] Sharada, K., Shankar, B.: MHD mixed convection flow of a Casson fluid over an exponentially stretching surface with the effects of Soret, Dufour, thermal radiation and chemical reaction. World J. Mech. 5, 165-177 (2015) · doi:10.4236/wjm.2015.59017
[28] Animasaun, I.L., Adebile, E.A., Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35, 1-17 (2015) · Zbl 1349.76884
[29] Ibrahim, W., Makinde, O.D.: Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. J. Aerosp. Eng. 29, 4015037 (2015) · doi:10.1061/(ASCE)AS.1943-5525.0000529
[30] Abbas, Z., Sheikh, M., Motsa, S.S.: Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95, 12-20 (2016). https://doi.org/10.1016/j.energy.2015.11.039 · doi:10.1016/j.energy.2015.11.039
[31] Mahdy, A.: Unsteady MHD slip flow of a non-Newtonian casson fluid due to stretching sheet with suction or blowing effect. J. Appl. Fluid Mech. 9, 785-793 (2016) · doi:10.18869/acadpub.jafm.68.225.24687
[32] Kumaran, G., Sandeep, N.: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion. J. Mol. Liq. 233, 262-269 (2017). https://doi.org/10.1016/j.molliq.2017.03.031 · doi:10.1016/j.molliq.2017.03.031
[33] Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: Colloidal study of Casson fluid with homogeneous – heterogeneous reactions. J. Colloid Interface Sci. 498, 85-90 (2017). https://doi.org/10.1016/j.jcis.2017.03.024 · doi:10.1016/j.jcis.2017.03.024
[34] Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 7, 2134-2152 (2017) · doi:10.1016/j.rinp.2017.06.003
[35] Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical study of the onset of convection in a Newtonian nanofluid layer with spatially uniform and non uniform internal heating. J. Nanofluids 6, 136-148 (2017) · doi:10.1166/jon.2017.1293
[36] Hayat, T., Hussain, Z., Farooq, M., Alsaedi, A.: Effects of homogeneous and heterogeneous reactions and melting heat in the viscoelastic fluid flow. J. Mol. Liq. 215, 749-755 (2016). https://doi.org/10.1016/j.molliq.2015.12.109 · doi:10.1016/j.molliq.2015.12.109
[37] Hayat, T., Hussain, Z., Alsaedi, A., Farooq, M.: Magnetohydrodynamic flow by a stretching cylinder with Newtonian heating and homogeneous – heterogeneous reactions. PLoS ONE 11, 1-23 (2016). https://doi.org/10.1371/journal.pone.0156955 · doi:10.1371/journal.pone.0156955
[38] Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous – heterogeneous reactions. J. Mol. Liq. 220, 49-55 (2016). https://doi.org/10.1016/j.molliq.2016.04.032 · doi:10.1016/j.molliq.2016.04.032
[39] Wakif, A., Boulahia, Z., Sehaqui, R.: Analytical and numerical study of the onset of electroconvection in a dielectric nanofluid saturated a rotating Darcy porous medium. Int. J. Adv. Comput. Sci. Appl. 7, 299-311 (2016)
[40] Wakif, Z., Boulahia, M., Zaydan, M., Yadil, N., Sehaqui, R.: The power series method to solve a magneto-convection problem in a Darcy-Brinkman porous medium saturated by an electrically conducting nanofluid layer. Int. J. Innov. Appl. Stud. 14, 1048-1065 (2016)
[41] Boulahia, Z., Wakif, A., Sehaqui, R.: Numerical study of mixed convection of the nanofluids in two-sided lid driven square cavity with a pair of triangular heating cylinders. J. Eng. (2016). https://doi.org/10.1155/2016/8962091 · doi:10.1155/2016/8962091
[42] Boulahia, Z., Wakif, A., Chamkha, A.J., Sehaqui, R.: Numerical study of natural and mixed convection in a square cavity filled by a Cu – water nanofluid with circular heating and cooling cylinders. Mech. Ind. 18, 502 (2017) · doi:10.1051/meca/2017021
[43] Ramzan, M., Farooq, M., Hayat, T., Chung, J.D.: Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. J. Mol. Liq. 221, 394-400 (2016). https://doi.org/10.1016/j.molliq.2016.05.091 · doi:10.1016/j.molliq.2016.05.091
[44] Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Water – carbon nanofluid flow with variable heat flux by a thin needle. J. Mol. Liq. 224, 65 (2016). https://doi.org/10.1016/j.molliq.2016.10.069 · doi:10.1016/j.molliq.2016.10.069
[45] Hayat, T., Naseem, A., Farooq, M., Alsaedi, A.: Unsteady MHD three-dimensional flow with viscous dissipation. Eur. Phys. J. Plus (2013). https://doi.org/10.1140/epjp/i2013-13158-1 · doi:10.1140/epjp/i2013-13158-1
[46] Samrat, S.P., Sulochana, C., Ashwinkumar, G.P.: Impact of thermal radiation and chemical reaction on unsteady 2D flow of magnetic-nanofluids over an elongated plate embedded with ferrous nanoparticles. Front. Heat Mass Transf. 10, 1-8 (2018). https://doi.org/10.5098/hmt.10.31 · doi:10.5098/hmt.10.31
[47] Wakif, A., Boulahia, Z., Sehaqui, R.: A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.01.066 · doi:10.1016/j.rinp.2018.01.066
[48] Prasad, P.D., Kiran, R.V.M.S.S., Varma, S.V.K.: Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption. Ain Shams Eng. J. (2016). https://doi.org/10.1016/j.asej.2016.04.016 · doi:10.1016/j.asej.2016.04.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.