×

An optimization numerical spiking neural P system for solving constrained optimization problems. (English) Zbl 07841794

Summary: An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spikes or the number of spikes in neurons, OSN P systems are limited for solving continuous optimization problems. To break this limitation, an extended numerical spiking neural (ENSN P) system is proposed based on numerical spiking neural P (NSN P) systems and multiple (ENSN P) systems, called optimization numerical spiking neural P systems (ONSN P systems or ONSNPS), are designed to solve continuous constrained optimization problems. More specifically, in ENSN P systems, the production functions are selected by probability to achieve updated parameters. In OSN P systems, a guider algorithm is introduced to finish individuals’ crossover and selection. The extensively experimental results in five benchmarks, thirty-two optimization problems including five benchmark problems, seventeen manufacturing design optimization problems and ten benchmarks from CEC show that ONSN P systems in this paper outperform or are competitive to twenty-eight optimization algorithms. Finally, algorithm complexity and Holm-Bonferroni procedure based on statistical results is used to test the complexity changing when we use different dimensionality of the search space and the difference in terms of statistical performance. The testing results indicate that the time complexity of ONSN P systems grows linearly with problem dimensions and ONSN P systems are better performance than the most algorithms.

MSC:

68-XX Computer science
90-XX Operations research, mathematical programming
93-XX Systems theory; control

Software:

ABC
Full Text: DOI

References:

[1] Ortiz, A.; Munilla, J.; Górriz, J. M.; Ramírez, J., Ensembles of deep learning architectures for the early diagnosis of the alzheimer’s disease, Int. J. Neural Syst., 26, 7, 1-23 (2016)
[2] Kasabov, N.; Dhoble, K.; Nuntalid, N.; Indiveri, G., Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition, Neural Networks, 41, 5, 188-201 (2013)
[3] Ding, S.; Li, H.; Su, C.; Yu, J.; Jin, F., Evolutionary artificial neural networks: a review, Artif. Intell. Rev., 39, 3, 251-260 (2013)
[4] Zhang, G.; Zhang, X.; Rong, H.; Paul, P.; Zhu, M.; Neri, F.; Ong, Y., A layered spiking neural system for classification problems, Int. J. Neural Syst., 32, 8, 1-15 (2022)
[5] Fiete, I.; Senn, W.; Wang, C.; Hahnloser, R., Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity, Neuron, 65, 4, 563-576 (2010)
[6] Deng, L.; Wu, Y.; Hu, X.; Liang, L.; Ding, Y.; Li, G.; Zhao, G.; Li, P.; Xie, Y., Rethinking the performance comparison between SNNS and ANNS, Neural Networks, 121, 294-307 (2020)
[7] Ren, T.; Cabarle, F.; Macababayao, I.; Adorna, H.; Zeng, X., Homogeneous spiking neural P systems with structural plasticity, J. Membr. Comput., 3, 1, 1-12 (2021)
[8] Pan, L.; Păun, G.; Zhang, G., Foreword: Starting JMC, J. Membr. Comput., 1, 1, 1-2 (2019)
[9] Peng, H.; Bao, T.; Luo, X.; Wang, J.; Song, X.; Riscos-Núñez, A.; Pérez-Jiménez, M. J., Dendrite P systems, Neural Networks, 127, 110-120 (2020) · Zbl 1468.68100
[10] Orellana-Martín, D.; Valencia-Cabrera, L.; Riscos-Núñez, A.; Pérez-Jiménez, M., Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems, J. Membr. Comput., 1, 1, 1-2 (2019)
[11] Song, B.; Pan, L.; Pérez-Jiménez, M. J., Tissue P systems with protein on cells, Fundamenta Informaticae, 144, 1, 77-107 (2016) · Zbl 1358.68102
[12] Song, B.; Zhang, C.; Pan, L., Tissue-like P systems with evolutional symport/antiport rules, Inf. Sci., 378, 177-193 (2017) · Zbl 1429.68074
[13] Cai, Y.; Mi, S.; Yan, J.; Peng, H.; Luo, X.; Yang, Q.; Wang, J., LSTM-SNP: A long short-term memory model inspired from spiking neural P systems, Knowl.-Based Syst., 235, Article 107656 pp. (2022)
[14] Liu, Q.; Long, L.; Peng, H.; Wang, J.; Yang, Q.; Song, X.; Yang, Q.; Riscos-Núñez, A.; Pérez-Jiménez, M. J., Gated Spiking Neural P Systems for Time Series Forecasting, IEEE Trans. Neural Networks Learn. Syst., 1-10 (2021)
[15] Long, L.; Lugu, R.; Xiong, X.; Liu, Q.; Peng, H.; Wang, J.; Orellana-Martín, D.; Pérez-Jiménez, M. J., Echo spiking neural P systems, Knowl.-Based Syst., 253, Article 109568 pp. (2022)
[16] Wu, T.; Pan, L.; Yu, Q.; Tan, K., Numerical spiking neural P systems, IEEE Trans. Neural Networks Learn. Syst., 32, 6, 1-15 (2020)
[17] Cabarle, F. G.C.; Zeng, X.; Murphy, N.; Song, T.; Rodríguez-Patón, A.; Liu, X., Neural-like P systems with plasmids, Inf. Comput., 281, Article 104766 pp. (2021) · Zbl 1518.68103
[18] Pan, L.; Zhang, Z.; Wu, T.; Xu, J., Numerical P systems with production thresholds, Theoret. Comput. Sci., 673, 30-41 (2017) · Zbl 1370.68097
[19] Zhang, G.; Pérez-Jiménez, M. J.; Gheorghe, M., Real-life Applications with Membrane Computing (2017), Emergence: Emergence Complexity and Computation, Springer · Zbl 1387.68005
[20] Sánchez-Karhunen, E.; Valencia-Cabrera, L., Modelling complex market interactions using PDP systems, J. Membr. Comput., 1, 1, 40-51 (2019)
[21] Peng, H.; Li, B.; Wang, J.; Song, X.; Wang, T.; Valencia-Cabrera, L.; Pérez-Hurtado, I.; Riscos-Núñez, A.; Pérez-Jiménez, M. J., Spiking neural P systems with inhibitory rules, Knowl.-Based Syst., 188, Article 105064 pp. (2020)
[22] Ionescu, M.; Păun, G.; Yokomori, T., Spiking neural P systems, Fundamenta Informaticae, 71, 2, 279-308 (2006) · Zbl 1110.68043
[23] G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural P system for approximately solving combinatorial problems, Int. J. Neural Syst. 24 (5) (2014) 1440006:01-16. doi:10.1142/S0129065714400061.
[24] M. Zhu, Q. Yang, J. Dong, G. Zhang, F. Neri, An adaptive optimization spiking neural P system for binary problems, Int. J. Neural Syst. 31 (1) (2021) 2050054:1-17. doi:10.1142/S0129065720500549.
[25] Dong, J.; Zhang, G.; Luo, B.; Yang, Q.; Guo, D.; Rong, H.; Zhu, M.; Zhou, K., A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems, Inf. Sci., 596, 1, 1-14 (2022) · Zbl 1540.90233
[26] Xue, J.; Wang, Y.; Kong, D.; Wu, F.; Yin, A.; Qu, J.; Liu, X., Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images, Expert Syst. Appl., 168, Article 114446 pp. (2021)
[27] Li, B.; Peng, H.; Luo, X.; Wang, J.; Song, X.; Pérez-Jiménez, M. J.; Riscos-Núñez, A., Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain, Int. J. Neural Syst., 31, 1 (2022)
[28] Cai, Y.; Mi, S.; Yan, J.; Peng, H.; Luo, X.; Yang, Q.; Wang, J., An unsupervised segmentation method based on dynamic threshold neural P systems for color images, Inf. Sci., 587, 473-484 (2022)
[29] Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V., Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10, 6, 646-657 (2006)
[30] Zhang, G.; Cheng, J.; Gheorghe, M.; Meng, Q., A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems, Appl. Soft Comput., 13, 3, 1528-1542 (2013)
[31] Yildiz, A., An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry, J. Mater. Process. Technol., 209, 6, 2773-2780 (2009)
[32] Coello Coello, C. A.; Cortés, N. C., Hybridizing a genetic algorithm with an artificial immune system for global optimization, Eng. Optimiz., 36, 5, 607-634 (2004)
[33] Yoo, J., Immune network modeling in design optimization, Struct. Multidisc. Optimiz., 18, 2-3, 85-94 (1999)
[34] Rao, R.; Savsani, V.; Vakharia, D., Teaching learning based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 3, 303-315 (2011)
[35] Mezura-Montes, E.; Coello, C., A simple multimembered evolution strategy to solve constrained optimization problems, IEEE Trans. Evol. Comput., 9, 1, 1-17 (2005)
[36] A. Zavala, A.H. Aguirre, E. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (peso), in: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005. · Zbl 1109.68624
[37] Landa, R.; Coello, C. A.C., Cultured differential evolution for constrained optimization, Comput. Methods Appl. Mech. Eng., 195, 33, 4303-4322 (2006) · Zbl 1123.74039
[38] Becerra, R. L.; Coello, C., Cultured differential evolution for constrained optimization, Comput. Methods Appl. Mech. Eng., 195, 33/36, 4303-4322 (2006) · Zbl 1123.74039
[39] D. Karaboga, B. Basturk, Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems, in: Foundations of Fuzzy Logic Soft Computing, International Fuzzy Systems Association World Congress, Ifsa, Cancun, Mexico, June 2007. · Zbl 1149.90186
[40] Gafar, M. G.; El-Sehiemy, R. A.; Sarhan, S., A hybrid fuzzy-crow optimizer for unconstrained and constrained engineering design problems, Human-Centric Comput. Inform. Sci., 12, 1-24 (2022)
[41] Liu, H.; Cai, Z.; Wang, Y., Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10, 629-640 (2010)
[42] B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale problems and engineering design optimization, J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4. · Zbl 1369.65071
[43] He, Q.; Ling, W., An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20, 1, 89-99 (2007)
[44] Deng, X.; Dong, J.; Wang, S.; Luo, B.; Feng, H.; Zhang, G., Reducer lubrication optimization with an optimization spiking neural P systems, Inf. Sci., 604, 1, 28-44 (2022)
[45] Liao, T., Two hybrid differential evolution algorithms for engineering design optimization, Appl. Soft Comput., 10, 1, 1188-1199 (2010)
[46] Awad, N.; Ali, M.; Suganthan, P.; Liang, J.; Qu, B., Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, Nanyang Technological University, Jordan University of Science and Technology and Zhengzhou University (2016), Tech: Tech Rep
[47] Abaeifar, A.; Barati, H.; Tavakoli, A., Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources, Int. J. Electr. Power Energy Syst., 137, Article 107877 pp. (2022)
[48] Ma, Y.; Zhang, X.; Song, J.; Chen, L., A modified teaching-learning-based optimization algorithm for solving optimization problem, Knowl.-Based Syst., 212, Article 106599 pp. (2021)
[49] Zhong, C.; Li, G., Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems, Expert Syst. Appl., 192, Article 116432 pp. (2022)
[50] Chen, D.; Lu, R.; Zou, F.; Li, S., Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization, Neurocomputing, 173, 1096-1111 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.