×

Neural-like P systems with plasmids. (English) Zbl 1518.68103

Summary: Two types of cells for bio-inspired computations are neurons and bacteria: the former have “simple” neurons that connect together to become more useful, i.e. structure is important to their overall function; the latter have bacteria “processing” DNA such as plasmids. We combine inspirations from both cell types as neural-like P systems with plasmids or NP P systems: bacteria are nodes in a digraph, with edges as communication links among bacteria. Bacteria use “transmit” and “kill” operations to send or remove plasmids. Another bio-inspiration is homogeneous bacteria, i.e. each bacterium has the same set of rules. Combining a neural-like structure with conjugation using plasmids proves useful: NP P systems are computationally complete even with homogeneous bacteria; bounding the number of plasmids reduces their computing power; we give an estimate of 164 bacteria for homogeneous NP P systems to remain complete.

MSC:

68Q07 Biologically inspired models of computation (DNA computing, membrane computing, etc.)
Full Text: DOI

References:

[1] Alhazov, A.; Freund, R.; Oswald, M., Tissue P systems with antiport rules and small numbers of symbols and cells, (De Felice, C.; Restivo, A., Developments in Language Theory (2005), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 100-111 · Zbl 1132.68386
[2] Bao, T.; Zhou, N.; Lv, Z.; Peng, H.; Wang, J., Sequential dynamic threshold neural p systems, J. Membr. Comput., 2, 4, 255-268 (2020) · Zbl 1469.68023
[3] Bernardini, F.; Gheorghe, M., Population P systems, J.UCS, 10, 5, 509-539 (2004)
[4] Bernardini, F.; Gheorghe, M.; Krasnogor, N., Quorum sensing P systems, Theor. Comput. Sci., 371, 1-2, 20-33 (2007) · Zbl 1108.68051
[5] Cabarle, F. G.C.; Adorna, H. N.; Jiang, M.; Zeng, X., Spiking neural P systems with scheduled synapses, IEEE Trans. Nanobiosci., 16, 8, 792-801 (2017)
[6] Cabarle, F. G.C.; Adorna, H. N.; Pérez-Jiménez, M. J., Asynchronous spiking neural P systems with structural plasticity, (Conference on Unconventional Computation and Natural Computation (2015), Springer: Springer Cham), 132-143 · Zbl 1465.68080
[7] Cabarle, F. G.C.; Adorna, H. N.; Pérez-Jiménez, M. J., Sequential spiking neural P systems with structural plasticity based on max/min spike number, Neural Comput. Appl., 27, 5, 1337-1347 (2016)
[8] Cabarle, F. G.C.; Adorna, H. N.; Pérez-Jiménez, M. J.; Song, T., Spiking neural P systems with structural plasticity, Neural Comput. Appl., 26, 8, 1905-1917 (2015)
[9] Cabarle, F. G.C.; de la Cruz, R. T.A.; Adorna, H. N.; Dimaano, M. D.; Peña, F. T.; Zeng, X., Small spiking neural P systems with structural plasticity, (Graciani, C.; Riscos-Núñez, A.; Păun, G.; Rozenberg, G.; Salomaa, A., Enjoying Natural Computing: Essays Dedicated to M.J. Pérez-Jiménez on the Occasion of His 70th Birthday (2018), Springer International Publishing: Springer International Publishing Cham), 45-56 · Zbl 1519.68085
[10] Cabarle, F. G.C.; de la Cruz, R. T.A.; Zhang, X.; Jiang, M.; Liu, X.; Zeng, X., On string languages generated by spiking neural P systems with structural plasticity, IEEE Trans. Nanobiosci., 17, 4, 560-566 (Oct 2018)
[11] Cavaliere, M.; Ibarra, O. H.; Păun, G.; Egecioglu, O.; Ionescu, M.; Woodworth, S., Asynchronous spiking neural P systems, Theor. Comput. Sci., 410, 24, 2352-2364 (2009) · Zbl 1168.68014
[12] Chen, H.; Freund, R.; Ionescu, M.; Păun, G.; Pérez-Jiménez, M., On string languages generated by spiking neural P systems, Fundam. Inform., 75, 1-4, 141-162 (2007) · Zbl 1108.68055
[13] Chen, H.; Ionescu, M.; Ishdorj, T.-O.; Păun, A.; Păun, G.; Pérez-Jiménez, M., Spiking neural P systems with extended rules: universality and languages, Nat. Comput., 7, 2, 147-166 (2008) · Zbl 1146.68033
[14] Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 6767, 335 (2000)
[15] Gao, P.; Ganguli, S., On simplicity and complexity in the brave new world of large-scale neuroscience, Curr. Opin. Neurobiol., 32, 148-155 (2015)
[16] Gardner, T. S.; Cantor, C. R.; Collins, J. J., Construction of a genetic toggle switch in escherichia coli, Nature, 403, 6767, 339 (2000)
[17] Goñi-Moreno, A.; Amos, M.; de la Cruz, F., Multicellular computing using conjugation for wiring, PLoS ONE, 8, 6, Article e65986 pp. (2013)
[18] Gou, X.; Liu, Q.; Rong, H.; Hu, M.; Paul, P.; Deng, F.; Zhang, X.; Yu, Z., A novel spiking neural p system for image recognition, Int. J. Unconv. Comput., 16 (2021)
[19] Howard, S. R.; Avarguès-Weber, A.; Garcia, J. E.; Greentree, A. D.; Dyer, A. G., Numerical ordering of zero in honey bees, Science, 360, 6393, 1124-1126 (2018)
[20] Hsu, P. D.; Lander, E. S.; Zhang, F., Development and applications of crispr-cas9 for genome engineering, Cell, 157, 6, 1262-1278 (2014)
[21] Ibarra, O.; Păun, A.; Păun, G.; Rodríguez-Patón, A.; Sosík, P.; Woodworth, S., Normal forms for spiking neural P systems, Theor. Comput. Sci., 372, 2-3, 196-217 (2007) · Zbl 1111.68040
[22] Ionescu, M.; Păun, Gh.; Yokomori, T., Spiking neural P systems, Fundam. Inform., 71, 2,3, 279-308 (2006) · Zbl 1110.68043
[23] Jiang, K.; Song, T.; Chen, W.; Pan, L., Homogeneous spiking neural P systems working in sequential mode induced by maximum spike number, Int. J. Comput. Math., 90, 4, 831-844 (2013) · Zbl 1286.68136
[24] Korec, I., Small universal register machines, Theor. Comput. Sci., 168, 2, 267-301 (1996) · Zbl 0874.68105
[25] Lahoz-Beltra, R.; Navarro, J.; Marijuan, P., Bacterial computing: a form of natural computing and its applications, Front. Microbiol., 5, 101 (2014)
[26] Lazo, P. P.L.; Cabarle, F. G.C.; Adorna, H. N.; Yap, J. M.C., A return to stochasticity and probability in spiking neural p systems, J. Membr. Comput., 1-13 (2021)
[27] LeDoux, J., Rethinking the emotional brain, Neuron, 73, 4, 653-676 (2012)
[28] Leporati, A.; Mauri, G.; Zandron, C.; Păun, G.; Pérez-Jiménez, M., Uniform solutions to SAT and subset sum by spiking neural P systems, Nat. Comput., 8, 4, 681-702 (2009) · Zbl 1185.68340
[29] Leporati, A.; Zandron, C.; Ferretti, C.; Mauri, G., On the computational power of spiking neural P systems, Int. J. Unconv. Comput., 5, 5 (2009)
[30] Maass, W., Computing with spikes, Special Issue on Foundations of Information Processing of TELEMATIK, 8, 1, 32-36 (2002)
[31] (Maass, W.; Bishop, C. M., Pulsed Neural Networks (1999), MIT Press: MIT Press Cambridge, MA, USA) · Zbl 0935.68087
[32] Martín-Vide, C.; Păun, G.; Pazos, J.; Rodríguez-Patón, A., Tissue P systems, Theor. Comput. Sci., 296, 2, 295-326 (2003) · Zbl 1045.68063
[33] McCulloch, W. S.; Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5, 4, 115-133 (1943) · Zbl 0063.03860
[34] Minsky, M. L., Computation: Finite and Infinite Machines (1967), Prentice-Hall, Inc.: Prentice-Hall, Inc. Upper Saddle River, NJ, USA · Zbl 0195.02402
[35] Neary, T., Three small universal spiking neural P systems, Theor. Comput. Sci., 567, C, 2-20 (2015) · Zbl 1314.68129
[36] Pan, L.; Păun, G.; Pérez-Jiménez, M., Spiking neural P systems with neuron division and budding, Sci. China Inf. Sci., 54, 8, 1596-1607 (2011) · Zbl 1267.68158
[37] Pan, L.; Wang, J.; Hoogeboom, H. J., Spiking neural P systems with astrocytes, Neural Comput., 24, 3, 805-825 (Mar 2012) · Zbl 1238.68056
[38] Pan, L.; Zeng, X.; Zhang, X.; Jiang, Y., Spiking neural P systems with weighted synapses, Neural Process. Lett., 35, 1, 13-27 (2012)
[39] Păun, A.; Păun, G., Small universal spiking neural P systems, Biosystems, 90, 1, 48-60 (2007)
[40] Păun, A.; Rodríguez-Patón, A., P systems simulating bacterial conjugation: universality and properties, Fundam. Inform., 153, 1-2, 87-103 (2017) · Zbl 1377.68086
[41] Păun, G., Membrane Computing: An Introduction (2002), Springer: Springer Heidelberg · Zbl 1034.68037
[42] (Păun, G.; Rozenberg, G.; Salomaa, A., The Oxford Handbook of Membrane Computing (2010), Oxford University Press) · Zbl 1237.68001
[43] Peng, H.; Bao, T.; Luo, X.; Wang, J.; Song, X.; Riscos-Núñez, A.; Pérez-Jiménez, M. J., Dendrite p systems, Neural Netw., 127, 110-120 (2020) · Zbl 1468.68100
[44] Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Süel, G. M., Ion channels enable electrical communication in bacterial communities, Nature, 527, 7576, 59-63 (2015)
[45] Păun, G., Computing with membranes, J. Comput. Syst. Sci., 61, 1, 108-143 (Aug. 2000) · Zbl 0956.68055
[46] Rajendran, B.; Sebastian, A.; Schmuker, M.; Srinivasa, N.; Eleftheriou, E., Low-power neuromorphic hardware for signal processing applications: a review of architectural and system-level design approaches, IEEE Signal Process. Mag., 36, 6, 97-110 (2019)
[47] Rozenberg, G.; Bäck, T.; Kok, J. N., Handbook of Natural Computing (4 volumes) (2012), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1248.68001
[48] (Rozenberg, G.; Salomaa, A., Handbook of Formal Languages, 3 volumes (1997), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0866.68057
[49] Sakakibara, Y.; Hiyama, S., Bacterial Computing and Molecular Communication, 1203-1232 (2012), Springer, in: [47]
[50] Shih, J.; Hodge, R.; Andrade-Navarro, M. A., Comparison of inter- and intraspecies variation in humans and fruit flies, Genomics Data, 3, 49-54 (2015)
[51] Siegelmann, H. T.; Sontag, E. D., On the computational power of neural nets, (Proc. 5th Workshop on Computational Learning Theory (1992)), 440-449
[52] Smillie, C.; Garcillán-Barcia, M. P.; Francia, M. V.; Rocha, E. P.; de la Cruz, F., Mobility of plasmids, Microbiol. Mol. Biol. Rev., 74, 3, 434-452 (2010)
[53] Song, T.; Rodríguez-Patón, A.; Zheng, P.; Zeng, X., Spiking neural P systems with colored spikes, IEEE Trans. Cogn. Dev. Syst., 1106-1115 (2018)
[54] Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M., Striving for simplicity: the all convolutional net (2014), arXiv preprint
[55] Turing, A. M., Intelligent machinery (1948), (Copeland, B. J., Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus the Secrets of Enigma (2004), OUP: OUP Oxford, England) · Zbl 0219.68052
[56] Wang, J.; Hoogeboom, H.; Pan, L., Spiking Neural P Systems with Neuron Division, LNCS, vol. 6501, 361-376 (2010) · Zbl 1259.68065
[57] Wang, J.; Hoogeboom, H.; Pan, L.; Păun, G.; Pérez-Jiménez, M., Spiking neural P systems with weights, Neural Comput., 22, 10, 2615-2646 (2010) · Zbl 1208.68120
[58] Wang, X.; Zheng, P.; Ma, T.; Song, T., Small universal bacteria and plasmid computing systems, Molecules, 23, 6, 1307 (2018)
[59] Wu, T.; Pan, L.; Yu, Q.; Tan, K. C., Numerical spiking neural p systems, IEEE Trans. Neural Netw. Learn. Syst., 1-15 (2020)
[60] Wu, T.; Păun, A.; Zhang, Z.; Pan, L., Spiking neural P systems with polarizations, IEEE Trans. Neural Netw. Learn. Syst., 29, 8, 3349-3360 (2017)
[61] Wu, T.; Zhang, L.; Pan, L., Spiking neural p systems with target indications, A Fascinating Rainbow of Computation - Honoring Gheorghe Păun on the Occasion of His 70th Birthday. A Fascinating Rainbow of Computation - Honoring Gheorghe Păun on the Occasion of His 70th Birthday, Theor. Comput. Sci., 862, 250-261 (2021) · Zbl 1497.68206
[62] Zhang, X.; Pan, L.; Păun, A., On the universality of axon P systems, IEEE Trans. Neural Netw. Learn. Syst., 26, 11, 2816-2829 (Nov 2015)
[63] Zeng, X.; Pan, L.; Pérez-Jiménez, M., Small universal simple spiking neural P systems with weights, Sci. China Inf. Sci., 57, 9, 1-11 (2014) · Zbl 1423.68182
[64] Zeng, X.; Zhang, X.; Pan, L., Homogeneous spiking neural P systems, Fundam. Inform., 97, 1-2, 275-294 (2009) · Zbl 1214.68165
[65] Zhang, X.; Luo, B.; Pan, L., Small universal tissue p systems with symport/antiport rules, Int. J. Comput. Commun. Control, 7, 1, 173-183 (2012)
[66] Zhang, X.; Zeng, X.; Pan, L., Smaller universal spiking neural P systems, Fundam. Inform., 87, 1, 117-136 (2008) · Zbl 1154.68054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.