×

Inverse multiquadric kernel-based neuro heuristic approach to analyze the unsteady MHD nanofluid flow via permeable elongating surface. (English) Zbl 07840211

Summary: In this study, a novel neuro heuristic approach is designed to investigate the flow properties of magnetohydrodynamic (MHD) nanofluid along an exponentially extending sheet with a permeable medium with the impact of radiation as well as fluctuating heat source/sink. The designed scheme to handle the suggested problem is established through the well-known biologically inspired neural networks (BINNs) by exploiting the inverse multiquadric kernel (IMQK), that is, BINNs-IMQK which is quite a new approach. The partial differential equations (PDEs) which govern the fluidic flow are reformed into a nonlinear system of ordinary differential equations (ODEs) using the most fitted similarity transformations rules and numerically solved by varying the parametric values including unsteady parameter, Brownian motion parameter, suction/injection parameter, radiation parameter, Schmidt number together with Prandtl number to visualize the velocity, thermal gradient, and mass transfer in the suggested fluid problem. It is noticed that nanofluid temperature hikes by uplifting the value of the Brownian motion parameter but this effect is reversed in case of unsteady parameter. The obtained numerical results are verified through reference solution using the well-known Adams method and the efficacy of the suggested solver is endorsed using a variety of statistical operators.
© 2023 The Authors. ZAMM - Journal of Applied Mathematics and Mechanics

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76T20 Suspensions
76M99 Basic methods in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
80A21 Radiative heat transfer
68T07 Artificial neural networks and deep learning

References:

[1] Choi, S.U., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP‐84938; CONF‐951135‐29). Argonne National Lab, IL (United States) (1995)
[2] Henein, S.M., Abdel‐Rehim, A.A.: The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid. Case Stud. Therm. Eng.33, 101957 (2022)
[3] Janocha, M., Tsotsas, E.: Coating layer formation from deposited droplets: A comparison of nanofluid, microfluid and solution. Powder Technol.399, 117202 (2022)
[4] Du, R., Jiang, D., Wang, Y., Shah, K.W.: An experimental investigation of CuO/water nanofluid heat transfer in geothermal heat exchanger. Energy Build.227, 110402 (2020)
[5] Contreras, E.M.C., Bandarra Filho, E.P.: Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range. Appl. Therm. Eng.207, 118149 (2022)
[6] Saleem, N., Ashraf, T., Daqqa, I., Munawar, S., Idrees, N., Afzal, F., Afzal, D.: Thermal case study of cilia actuated transport of radiated blood‐based ternary nanofluid under the action of tilted magnetic field. Coatings. 12(6), 873 (2022)
[7] Enjavi, Y., Sedghamiz, M.A., Rahimpour, M.R.: Application of nanofluids in drug delivery and disease treatment. In: Nanofluids and Mass Transfer, pp. 449-465. Elsevier, Dutch (Netherlands), (2022)
[8] Khiabani, N.P., Fakhroueian, Z., Bahramian, A., Vatanparast, H.: Crystal growth of magnesium oxide nanocompounds for wetting alteration of carbonate surfaces. Chem. Pap.73(10), 2513-2524 (2019)
[9] Zhu, B., Sun, Y., Guo, P., Liu, J.: Nano‐sized copper oxide enhancing the combustion of aluminum/kerosene‐based nanofluid fuel droplets. Combust. Flame. 240, 112028 (2022)
[10] Gupta, M., Singh, V., Kumar, R., Said, Z.: A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev.74, 638-670 (2017)
[11] Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol.9(1), 1050-1074 (2018)
[12] Ghani, S.N.A., Ul‐Haq, R., Noor, N.F.M.: Engine oil enhanced performance with hybrid graphene‐SWCNT nanomaterials over a Riga curvy surface. Case Stud. Therm. Eng.45, 102902 (2023)
[13] Khan Usafzai, W., Haq, R.U., Aly, E.H.: Wall laminar nanofluid jet flow and heat transfer. Int. J. Numer. Methods Heat Fluid Flow. 33(5), 1818-1836 (2023)
[14] Haq, R.U., Sajjad, T., Usman, M., Naseem, A.: Oblique stagnation point flow of micropolar nanofluid impinge along a vertical surface via modified Chebyshev collocation method. Phys. Fluids. 34(10) (2022)
[15] Soomro, F.A., Usman, M., El‐Sapa, S., Hamid, M., Haq, R.U.: Numerical study of heat transfer performance of MHD Al2O3‐Cu/water hybrid nanofluid flow over inclined surface. Arch Appl. Mech.92(9), 2757-2765 (2022)
[16] Alizadeh, M., Haq, R.U., Hamid, M., Nguyen, V.B., Truong, T.H., Ganji, D.D., Tian, Z.F.: An analysis of latent heat thermal energy storage in a hexagonal triplex‐tube unit with curve shape fin and CNTs. Case Stud. Therm. Eng.36, 102241 (2022)
[17] Ullah, M.Z., Hussain, S.T., Haq, R.U., Alzahrani, A.K., Mallawi, F.: Thermal energy performance due to convection process of nanofluid in a porous medium due to split lid motion in a right triangular enclosure. J. Comput. Des. Eng.9(3), 890-906 (2022)
[18] Shah, S.S., ul Haq, R., McCash, L.B., Bahaidarah, H.M., Aziz, T.: Numerical simulation of lid driven flow in a curved corrugated porous cavity filled with CuO‐water in the presence of heat generation/absorption. Alexandria Eng. J.61(4), 2749-2767 (2022)
[19] Nguyen, M.N., Shah, S.S., Haq, R.U., Le, T.H., McCash, L.B.: Thermal performance of water driven flow of nanoparticle’s shape due to double sided forced convection enclosed in a porous corrugated duct. J. Mol. Liq.347, 118046 (2022)
[20] Williams, H.M.: The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Biosci. Horiz.10, 1-10 (2017)
[21] Abbas, W., Magdy, M.M.: Heat and mass transfer analysis of nanofluid flow based on, and over a moving rotating plate and impact of various nanoparticle shapes. Math. Probl. Eng.2020, 1-12 (2020) · Zbl 07347962
[22] Raza, J., Mebarek‐Oudina, F., Ram, P., Sharma, S.: MHD flow of non‐Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation. In: Defect and Diffusion Forum, vol. 401, pp. 92-106. Trans Tech Publications Ltd, Switzerland (2020)
[23] Tlili, I., Ramzan, M., Kadry, S., Kim, H.W., Nam, Y.: Radiative MHD nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current. Entropy. 22(3), 354 (2020)
[24] Shah, Z., McCash, L.B., Dawar, A., Bonyah, E.: Entropy optimization in Darcy-Forchheimer MHD flow of water based copper and silver nanofluids with Joule heating and viscous dissipation effects. AIP Adv.10(6), 065137 (2020)
[25] Hayat, T., Riaz, R., Aziz, A., Alsaedi, A.: Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions. Physica A. 549, 124006 (2020) · Zbl 07572664
[26] Sobamowo, M.G., Yinusa, A.A., Akinshilo, A.T.: Homotopy analysis method to MHD‐slip flow of an upper‐convected maxwell viscoelastic nanofluid in a permeable channel embedded in a porous medium. Int. J. Petrochem. Sci. Eng.5, 11-20 (2020)
[27] Gupta, S., Kumar, D., Singh, J.: Analytical study for MHD flow of Williamson nanofluid with the effects of variable thickness, nonlinear thermal radiation and improved Fourier’s and Fick’s Laws. SN Appl. Sci.2(3), 1-12 (2020)
[28] Alreshidi, N.A., Shah, Z., Dawar, A., Kumam, P., Shutaywi, M., Watthayu, W.: Brownian motion and thermophoresis effects on MHD three dimensional nanofluid flow with slip conditions and Joule dissipation due to porous rotating disk. Molecules. 25(3), 729 (2020)
[29] Raghunath, K., Obulesu, M., Sivaprasad, R.: Heat and mass transfer on an unsteady MHD flow through porous medium between two porous vertical plates. In: AIP Conference Proceedings, Vol. 2220, No. 1, p. 130003. AIP Publishing LLC, USA (2020)
[30] Sreedevi, P., Sudarsana Reddy, P., Sheremet, M.A.: Impact of homogeneous-heterogeneous reactions on heat and mass transfer flow of Au-Eg and Ag-Eg Maxwell nanofluid past a horizontal stretched cylinder. J. Therm. Anal. Calorim.141(1), 533-546 (2020)
[31] Gireesha, B.J., Kumar, K.G., Ramesh, G.K., Prasannakumara, B.C.: Nonlinear convective heat and mass transfer of Oldroyd‐B nanofluid over a stretching sheet in the presence of uniform heat source/sink. Results Phys.9, 1555-1563 (2018)
[32] Rizwan, A., Ahmad, I., Raja, M.A.Z., Shoaib, M.: Design of spline-evolutionary computing paradigm for nonlinear thin film flow model. Arab J. Sci. Eng.46(9), 9279-9299 (2021)
[33] Ali, S., Ahmad, I., Raja, M.A.Z., Ahmad, S.U.I., Shoaib, M.: Design of evolutionary cubic spline intelligent solver for nonlinear Painlevé‐I transcendent. Int. J. Mod. Phys. B. 35(29), 2150299 (2021) · Zbl 1492.65038
[34] Khan, I., Raja, M.A.Z., Khan, M.A.R., Shoaib, M., Islam, S., Shah, Z.: Design of backpropagated intelligent networks for nonlinear second‐order Lane-Emden pantograph delay differential systems. Arab J. Sci. Eng.47(2), 1197-1210 (2022)
[35] Faieq, A.K., Mijwil, M.M.: Prediction of heart diseases utilising support vector machine and artificial neural network. Indones. J. Electr. Eng. Comput. Sci.26(1), 374-380 (2022)
[36] Shoaib, M., Raja, M.A.Z., Farhat, I., Shah, Z., Kumam, P., Islam, S.: Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer. Alexandria Eng. J.61(2), 1607-1623 (2022)
[37] Khan, W.U., Raja, M.A.Z., He, Y., Chaudhary, N.I.: A novel application of integrated grasshopper optimization heuristics for attenuation of noise interferences. Ain Shams Eng. J.13(2), 101536 (2022)
[38] Ilyas, H., Raja, M.A.Z., Ahmad, I., Shoaib, M.: A novel design of Gaussian wavelet neural networks for nonlinear Falkner‐Skan systems in fluid dynamics. Chin. J. Phys.72, 386-402 (2021)
[39] Zhang, Y., Lin, J., Hu, Z., Khan, N.A., Sulaiman, M.: Analysis of third‐order nonlinear multi‐singular Emden-Fowler equation by using the LeNN‐WOA‐NM algorithm. IEEE Access. 9, 72111-72138 (2021)
[40] Umar, M., Kusen Raja, M.A.Z., Sabir, Z., Al‐Mdallal, Q.: A computational framework to solve the nonlinear dengue fever SIR system. Comput. Meth. Biomech. Biomed. Eng.25(16), 1-14 (2022)
[41] Khan, A.A., Shah, S.M., Raja, M.A.Z., Chaudhary, N.I., He, Y., Machado, J.A.: Fractional LMS and NLMS algorithms for line echo cancellation. Arab J. Sci. Eng.46(10), 9385-9398 (2021)
[42] Muhammad, Y., Akhtar, R., Khan, R., Ullah, F., Raja, M.A.Z., Machado, J.A.: Design of fractional evolutionary processing for reactive power planning with FACTS devices. Sci. Rep.11(1), 1-29 (2021)
[43] Shoaib, M., Raja, M.A.Z., Sabir, M.T., Bukhari, A.H., Alrabaiah, H., Shah, Z., Kumam, P., Islam, S.: A stochastic numerical analysis based on hybrid NAR‐RBFs networks nonlinear SITR model for novel COVID‐19 dynamics. Comput. Methods Programs Biomed.202, 105973 (2021)
[44] Faisal, F., Shoaib, M., Raja, M.A.Z.: A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines. Eur. Phys. J C Part Fields. 135(1), 55 (2020)
[45] Zameer, A., Arshad, J., Khan, A., Raja, M.A.Z.: Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manage.134, 361-372 (2017)
[46] Ahmad, I., Raja, M.A.Z., Ramos, H., Bilal, M., Shoaib, M.: Integrated neuro‐evolution‐based computing solver for dynamics of nonlinear corneal shape model numerically. Neural. Comput. Appl.33(11), 5753-5769 (2021)
[47] Chaudhary, N.I., Raja, M.A.Z., He, Y., Khan, Z.A., Machado, J.T.: Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems. Appl. Math. Modell.93, 412-425 (2021) · Zbl 1481.93148
[48] Ilyas, H., Ahmad, I., Raja, M.A.Z., Tahir, M.B., Shoaib, M.: Neuro‐intelligent mappings of hybrid hydro‐nanofluid Al2O3-Cu-H2O model in porous medium over rotating disk with viscous dissolution and Joule heating. Int. J. Hydrogen Energy. 46(55), 28298-28326 (2021)
[49] Kumar, G.V., Rehman, K.U., Kumar, R.V.M.S.S.K., Shatanawi, W.: Unsteady magnetohydrodynamic nanofluid flow over a permeable exponentially surface manifested with non‐uniform heat source/sink effects. Waves Random Complex Media. 1-19 (2022)
[50] Bhattacharyya, K., Pop, I.: MHD boundary layer flow due to an exponentially shrinking sheet. Magnetohydrodynamics. 47(4), 337-344 (2011)
[51] Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput.38(157), 181-200 (1982) · Zbl 0476.65005
[52] Butt, Z.I., Ahmad, I., Shoaib, M., Ilyas, H., Kiani, A.K., Raja, M.A.Z.: Neuro‐evolution heuristics for Prandtl‐Eyring nanofluid flow with homogenous/heterogeneous reaction across a linearly heated stretched sheet. Waves Random Complex Media. 1-47 (2023). https://doi.org/10.1080/17455030.2022.2155325 · doi:10.1080/17455030.2022.2155325
[53] Butt, Z.I., Ahmad, I., Ilyas, H., Shoaib, M., Raja, M.A.Z.: Design of inverse multiquadric radial basis neural networks for the dynamical analysis of MHD casson nanofluid flow along a nonlinear stretchable porous surface with multiple slip conditions. Int. J. Hydrogen Energy48, 16100-16131 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.319 · doi:10.1016/j.ijhydene.2022.12.319
[54] Li, R., Xu, A., Zhao, Y., Chang, H., Li, X., Lin, G.: Genetic algorithm (GA)‐Artificial neural network (ANN) modeling for the emission rates of toxic volatile organic compounds (VOCs) emitted from landfill working surface. J. Environ. Manage.305, 114433 (2022)
[55] Singh, V.K., Panda, K.C., Sagar, A., Al‐Ansari, N., Duan, H.F., Paramaguru, P.K., Vishwakarma, D.K., Kumar, A., Kumar, D., Kashyap, P.S., Singh, R.M.: Novel Genetic Algorithm (GA) based hybrid machine learning‐pedotransfer Function (ML‐PTF) for prediction of spatial pattern of saturated hydraulic conductivity. Eng. Appl. Comput. Fluid Mech.16(1), 1082-1099 (2022)
[56] Butt, Z.I., Ahmad, I., Shoaib, M., Ilyas, H., Raja, M.A.Z.: A novel design of inverse multiquadric radial basis neural networks to analyze MHD nanofluid boundary layer flow past a wedge embedded in a porous medium under the influence of radiation and viscous effects. Int. Commun. Heat Mass Transfer. 140, 106516 (2023)
[57] Shoaib, M., Tabassum, R., Raja, M.A.Z., Nisar, K.S., Alqahtani, M.S., Abbas, M.: A design of predictive computational network for transmission model of Lassa fever in Nigeria. Results Phys.39, 105713 (2022)
[58] Butt, Z.I., Ahmad, I., Shoaib, M.: Design of inverse multiquadric radial basis neural networks for the dynamical analysis of wire coating problem with Oldroyd 8‐constant fluid. AIP Adv.12(10), 105306 (2022)
[59] Butt, Z.I., Ahmad, I., Shoaib, M., Ilyas, H., Raja, M.A.Z.: Electro‐magnetohydrodynamic impact on Darrcy‐Forchheimer viscous fluid flow over a stretchable surface: Integrated intelligent Neuro‐evolutionary computing approach. Int. Commun. Heat Mass Transfer. 137, 106262 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.