×

Heat and mass transfer analysis of nanofluid flow based on Cu, \(\mathrm{Al_2O_3}\), and \(\mathrm{TiO_2}\) over a moving rotating plate and impact of various nanoparticle shapes. (English) Zbl 07347962

Summary: The study of rotating nanofluid flows has a vital role in several applications such as in food processing, rotating machinery, cooling systems, and chemical fluid. The aims of the present work are to improve the thermophysical properties of convective flow and heat transfer for unsteady nanofluid past a moving rotating plate in the presence of ohmic, viscous dissipations, Brownian, and thermophoresis diffusion. The system is strained under the effect of strong magnetic field, and then the Hall current is considered. For this investigation, three different types of the nanoparticles Cu (copper), \(\mathrm{Al_2O_3}\) (aluminium oxide), and \(\mathrm{TiO_2}\) (titanium dioxide) with various shapes (spherical, cylindrical, and brick) are considered, and water is used as a base nanofluid. The system governing equations are solved semianalytically using homotopy perturbation technique. In order to validate the present work, different comparisons are made under some special cases with previously published results and found an excellent agreement. It is observed that the shape of nanoparticles plays a substantial role to significantly determine the flow behaviour. Also, it can be found that the use of the cylindrical nanoparticle shape has better improvement for heat transfer rate compared with the other nanoparticle shapes.

MSC:

76T20 Suspensions
80A19 Diffusive and convective heat and mass transfer, heat flow
82D80 Statistical mechanics of nanostructures and nanoparticles
Full Text: DOI

References:

[1] Hayat, T.; Sajjad, R.; Alsaedi, A.; Muhammad, T.; Ellahi, R., On squeezed flow of couple stress nanofluid between two parallel plates, Results in Physics, 7, 553-561 (2017) · doi:10.1016/j.rinp.2016.12.038
[2] Choi, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of the ASME International Mechanical Engineering Congress and Exposition
[3] Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78, 6, 718-720 (2001) · doi:10.1063/1.1341218
[4] Chamkha, A. J.; Abbasbandy, S.; Rashad, A. M.; Vajravelu, K., Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid, Meccanica, 48, 2, 275-285 (2013) · Zbl 1293.76123 · doi:10.1007/s11012-012-9599-1
[5] Sheikholeslami, M.; Rashidi, M. M.; Hayat, T.; Ganji, D. D., Free convection of magnetic nanofluid considering MFD viscosity effect, Journal of Molecular Liquids, 218, 393-399 (2016) · doi:10.1016/j.molliq.2016.02.093
[6] Abbas, W.; Sayed, E. A., Hall current and joule heating effects on free convection flow of a nanofluid over a vertical cone in presence of thermal radiation, Thermal Science, 21, 2603-2614 (2017) · doi:10.2298/tsci160413083a
[7] Mahanthesh, B.; Gireesha, B.; Animasaun, I.; Muhammad, T.; Shashikumar, N., MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source, Physica Scripta, 94, 8 (2019) · doi:10.1088/1402-4896/ab18ba
[8] Animasaun, I. L.; Koriko, O. K.; Adegbie, K. S., Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect, Journal of Thermal Analysis and Calorimetry, 135, 2, 873-886 (2019) · doi:10.1007/s10973-018-7379-4
[9] Ullah, I.; Shafie, S.; Khan, I.; Hsiao, K. L., Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge, Results in Physics, 9, 183-194 (2018) · doi:10.1016/j.rinp.2018.02.021
[10] Kumar, P. B. S.; Gireesha, B. J.; Gorla, R. S. R.; Mahanthesh, B., Magnetohydrodynamic flow of Williamson nanofluid due to an exponentially stretching surface in the presence of thermal radiation and chemical reaction, Journal of Nanofluids, 6, 2, 264-272 (2017) · doi:10.1166/jon.2017.1317
[11] Zhou, X.; Jiang, Y.; Li, X., Numerical investigation of heat transfer enhancement and entropy generation of natural convection in a cavity containing nano liquid-metal fluid, International Communications in Heat and Mass Transfer, 106, 46-54 (2019) · doi:10.1016/j.icheatmasstransfer.2019.05.003
[12] Shehzad, N.; Zeeshan, A.; Ellahi, R.; Vafai, K., Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model, Journal of Molecular Liquids, 222, 446-455 (2016) · doi:10.1016/j.molliq.2016.07.052
[13] Shen, B.; Zheng, L.; Zhang, C.; Zhang, X., Bioconvection heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump, Thermal Science, 21, 6, 2347-2356 (2017) · doi:10.2298/tsci150424128s
[14] Jahan, S.; Sakidin, H.; Nazar, R.; Pop, I., Analysis of heat transfer in nanofluid past a convectively heated permeable stretching/shrinking sheet with regression and stability analyses, Results in Physics, 10, 395-405 (2018) · doi:10.1016/j.rinp.2018.06.021
[15] Hamad, M. A. A.; Pop, I., Unsteady MHD free convection flow past a vertical permeable flat plate in a rotating frame of reference with constant heat source in a nanofluid, Heat and Mass Transfer, 47, 12, 1517-1524 (2011) · doi:10.1007/s00231-011-0816-6
[16] Sheikholeslami, M.; Ganji, D. D., Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Technology, 253, 789-796 (2014) · doi:10.1016/j.powtec.2013.12.042
[17] Hussain, S. M.; Jain, J.; Seth, G. S.; Rashidi, M. M., Free convective heat transfer with Hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system, Journal of Magnetism and Magnetic Materials, 422, 112-123 (2017) · doi:10.1016/j.jmmm.2016.08.081
[18] Zhou, X.; Jiang, Y.; Hou, Y.; Du, M., Thermocapillary convection instability in annular two-layer system under various gravity levels, Microgravity Science and Technology, 31, 5, 641-648 (2019) · doi:10.1007/s12217-019-09742-6
[19] Jiang, Y.; Zhou, X., Heat transfer and entropy generation analysis of nanofluids thermocapillary convection around a bubble in a cavity, International Communications in Heat and Mass Transfer, 105, 37-45 (2019) · doi:10.1016/j.icheatmasstransfer.2019.03.013
[20] Jiang, Y.; Zhou, X.; Wang, Y., Effects of nanoparticle shapes on heat and mass transfer of nanofluid thermocapillary convection around a gas bubble, Microgravity Science and Technology, 1-11, 2019, In press · doi:10.1007/s12217-019-09757-z
[21] Jiang, Y.; Zhou, X.; Wang, Y., Comprehensive heat transfer performance analysis of nanofluid mixed forced and thermocapillary convection around a gas bubble in minichannel, International Communications in Heat and Mass Transfer, 110 (2020) · doi:10.1016/j.icheatmasstransfer.2019.104386
[22] Mahanthesh, B.; Gireesha, B. J.; Gorla, R. S. R.; Abbasi, F. M.; Shehzad, S. A., Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary, Journal of Magnetism and Magnetic Materials, 417, 189-196 (2016) · doi:10.1016/j.jmmm.2016.05.051
[23] Mahanthesh, B.; Gireesha, B. J.; Animasaun, I. L., Exploration of non-linear thermal radiation and suspended nanoparticles effects on mixed convection boundary layer flow of nanoliquids on a melting vertical surface, Journal of Nanofluids, 7, 5, 833-843 (2018) · doi:10.1166/jon.2018.1521
[24] Kumar, P. S.; Mahanthesh, B.; Gireesha, B.; Shehzad, S., Quadratic convective flow of radiated nano-jeffrey liquid subject to multiple convective conditions and Cattaneo-Christov double diffusion, Applied Mathematics and Mechanics, 39, 9, 1311-1326 (2018) · doi:10.1007/s10483-018-2362-9
[25] Raza, J.; Mebarek-Oudina, F.; Chamkha, A., Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects, Multidiscipline Modeling in Materials and Structures, 15, 4, 737-757 (2019) · doi:10.1108/mmms-07-2018-0133
[26] Hayat, T.; Ahmed, B.; Abbasi, F. M.; Alsaedi, A., Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study, Journal of Molecular Liquids, 234, 324-329 (2017) · doi:10.1016/j.molliq.2017.03.080
[27] Oztop, H. F.; Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29, 5, 1326-1336 (2008) · doi:10.1016/j.ijheatfluidflow.2008.04.009
[28] El Kot, M. A.; Abbas, W., Numerical technique of blood flow through catheterized arteries with overlapping stenosis, Computer Methods in Biomechanics and Biomedical Engineering, 20, 1, 45-58 (2017) · doi:10.1080/10255842.2016.1196198
[29] Attia, H. A.; Abbas, W.; El-Din Abdin, A.; Abdeen, M. A. M., Effects of ion slip and Hall current on unsteady Couette flow of a dusty fluid through porous media with heat transfer, High Temperature, 53, 6, 891-898 (2015) · doi:10.1134/s0018151x15060024
[30] Attia, H. A.; Abbas, W.; Abdeen, M. A. M., Ion slip effect on unsteady Couette flow of a dusty fluid in the presence of uniform suction and injection with heat transfer, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, 8, 2381-2391 (2016) · doi:10.1007/s40430-015-0311-y
[31] Attia, H. A.; Abbas, W.; Abdeen, M. A. M.; Said, A. A. M., Heat transfer between two parallel porous plates for Couette flow under pressure gradient and Hall current, Sadhana, 40, 1, 183-197 (2015) · Zbl 1322.76058 · doi:10.1007/s12046-014-0307-9
[32] Sheikholeslami, M.; Shafee, A.; Ramzan, M.; Li, Z., Investigation of Lorentz forces and radiation impacts on nanofluid treatment in a porous semi annulus via Darcy law, Journal of Molecular Liquids, 272, 8-14 (2018) · doi:10.1016/j.molliq.2018.09.016
[33] Kumar, P. S.; Gireesha, B.; Mahanthesh, B.; Chamkha, A. J., Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition, Journal of Thermal Analysis and Calorimetry, 136, 5, 1947-1957 (2019) · doi:10.1007/s10973-018-7860-0
[34] Mahanthesh, B.; Mabood, F.; Gireesha, B.; Gorla, R., Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface, The European Physical Journal Plus, 132, 3, 113 (2017) · doi:10.1140/epjp/i2017-11389-8
[35] Gireesha, B. J.; Gorla, R. S. R.; Mahanthesh, B., Effect of suspended nanoparticles on three-dimensional mhd flow, heat and mass transfer of radiating eyring-powell fluid over a stretching sheet, Journal of Nanofluids, 4, 4, 474-484 (2015) · doi:10.1166/jon.2015.1177
[36] He, J.-H., Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 3-4, 257-262 (1999) · Zbl 0956.70017 · doi:10.1016/s0045-7825(99)00018-3
[37] He, J.-H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics, 35, 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/s0020-7462(98)00085-7
[38] Wu, Y.; He, J.-H., Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass, Results in Physics, 10, 270-271 (2018) · doi:10.1016/j.rinp.2018.06.015
[39] Das, K., Flow and heat transfer characteristics of nanofluids in a rotating frame, Alexandria Engineering Journal, 53, 3, 757-766 (2014) · doi:10.1016/j.aej.2014.04.003
[40] Reddy, J. V. R.; Sugunamma, V.; Sandeep, N.; Sulochana, C., Influence of chemical reaction, radiation and rotation on MHD nanofluid flow past a permeable flat plate in porous medium, Journal of the Nigerian Mathematical Society, 35, 1, 48-65 (2016) · Zbl 1349.76876 · doi:10.1016/j.jnnms.2015.08.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.