×

Overcoming the numerical sign problem in the Wigner dynamics via adaptive particle annihilation. (English) Zbl 07837191

Summary: The infamous numerical sign problem poses a fundamental obstacle to particle-based stochastic Wigner simulations in high-dimensional phase space. Although the existing particle annihilation (PA) via uniform mesh significantly alleviates the sign problem when dimensionality D\(\leq 4\), the mesh size grows dramatically when D\(\geq 6\) due to the curse of dimensionality and consequently makes the annihilation very inefficient. In this paper, we propose an adaptive PA algorithm, termed sequential-clustering particle annihilation via discrepancy estimation (SPADE), to overcome the sign problem. SPADE follows a divide-and-conquer strategy: adaptive clustering of particles via controlling their number-theoretic discrepancies and independent random matching in each cluster. The target is to alleviate the oversampling problem induced by the overpartitioning of phase space and to capture the nonclassicality of the Wigner function simultaneously. Combining SPADE with the variance reduction technique based on the stationary phase approximation, we attempt to simulate the proton-electron couplings in six- and 12-dimensional phase space. A thorough performance benchmark of SPADE is provided with the reference solutions in six-dimensional phase space produced by a characteristic-spectral-mixed scheme under a \(73^3 \times 80^3\) uniform grid, which fully explores the limit of grid-based deterministic Wigner solvers.

MSC:

82M36 Computational density functional analysis in statistical mechanics
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
60J85 Applications of branching processes
65C05 Monte Carlo methods
62G09 Nonparametric statistical resampling methods
35Q40 PDEs in connection with quantum mechanics

References:

[1] Wigner, E., On the quantum corrections for thermodynamic equilibrium, Phys. Rev., 40 (1932), pp. 749-759. · Zbl 0004.38201
[2] Frensley, W. R., Wigner-function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36 (1987), pp. 1570-1580.
[3] Kosina, H., Sverdlov, V., and Grasser, T., Wigner Monte Carlo simulation: Particle annihilation and device applications, in 2006 International Conference on Simulation of Semiconductor Processes and Devices, , IEEE, New York, 2006, pp. 357-360.
[4] Sellier, J. M., Nedjalkov, M., Dimov, I., and Selberherr, S., A benchmark study of the Wigner Monte Carlo method, Monte Carlo Methods Appl., 20 (2014), pp. 43-51. · Zbl 1285.81044
[5] Jacoboni, C., Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions, Springer Science & Business Media, New York, 2010.
[6] Nedjalkov, M., Querlioz, D., Dollfus, P., and Kosina, H., Wigner function approach, in Nano-Electronic Devices, Vasileska, D. and Goodnick, S. M., eds., Springer, New York, 2011, pp. 289-358.
[7] Luca, L. and Romano, V., Quantum corrected hydrodynamic models for charge transport in graphene, Ann. Phys., 406 (2019), pp. 30-53. · Zbl 1423.82024
[8] Benam, M., Ballichia, M., Weinbub, J., Selberherr, S., and Nedjalkov, M., A computational approach for investigating Coulomb interaction using Wigner-Poisson coupling, J. Comput. Electron., 20 (2021), pp. 755-784.
[9] Graziani, F. R., Bauer, J. D., and Murillo, M. S., Kinetic theory molecular dynamics and hot dense matter: Theoretical foundations, Phys. Rev. E, 90 (2014), 033104.
[10] Kurtsiefer, C., Pfau, T., and Mlynek, J., Measurement of the Wigner function of an ensemble of helium atoms, Nature, 386 (1997), pp. 150-153.
[11] Davies, B. I., Rundle, R., Dwyer, V. M., Todd, T., and Everitt, M., Visualizing spin degrees of freedom in atoms and molecules, Phys. Rev. A, 100 (2019), pp. 2469-9934.
[12] Kosina, H., Nedjalkov, M., and Selberherr, S., A Monte Carlo method seamlessly linking quantum and classical transport calculations, J. Comput. Electron., 2 (2003), pp. 147-151.
[13] Xiong, Y., Zhang, Y., and Shao, S., A characteristic-spectral-mixed scheme for six-dimensional Wigner-Coulomb dynamics, SIAM J. Sci. Comput., 45 (2023), pp. B906-B931. · Zbl 1536.81105
[14] Furtmaier, O., Succi, S., and Mendoza, M., Semi-spectral method for the Wigner equation, J. Comput. Phys., 305 (2016), pp. 1015-1036. · Zbl 1349.81017
[15] Van de Put, M. L., Sorée, B., and Magnus, W., Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field, J. Comput. Phys., 350 (2017), pp. 314-325.
[16] Querlioz, D. and Dollfus, P., The Wigner Monte Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence, Wiley-ISTE, London, 2010. · Zbl 1195.81128
[17] Wagner, W., A random cloud model for the Wigner equation, Kinet. Relat. Models, 9 (2016), pp. 217-235. · Zbl 1329.60352
[18] Muscato, O. and Wagner, W., A class of stochastic algorithms for the Wigner equation, SIAM J. Sci. Comput., 38 (2016), pp. A1483-A1507. · Zbl 1338.65017
[19] Shao, S. and Sellier, J. M., Comparison of deterministic and stochastic methods for time-dependent Wigner simulations, J. Comput. Phys., 300 (2015), pp. 167-185. · Zbl 1349.81176
[20] Shao, S. and Xiong, Y., A branching random walk method for many-body Wigner quantum dynamics, Numer. Math. Theory Methods Appl., 12 (2019), pp. 21-71. · Zbl 1438.60113
[21] Shao, S. and Xiong, Y., Branching random walk solutions to the Wigner equation, SIAM J. Numer. Anal., 58 (2020), pp. 2589-2608. · Zbl 1448.81419
[22] Schmidt, T. C. and Moehring, K., Stochastic path-integral simulation of quantum scattering, Phys. Rev. A, 48 (1993), pp. R3418-R3420.
[23] Nedjalkov, M., Kosina, H., and Selberherr, S., The stationary Monte Carlo method for device simulation. II. Event biasing and variance estimation, J. Appl. Phys., 93 (2003), pp. 3564-3571.
[24] Troyer, M. and Wiese, U. J., Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett., 94 (2005), pp. 21-71.
[25] Iazzi, M., Soluyanov, A. A., and Troyer, M., Topological origin of the fermion sign problem, Phys. Rev. B, 93 (2016), 115102.
[26] Gehring, A. and Kosina, H., Wigner function-based simulation of quantum transport in scaled DG-MOSFETs using a Monte Carlo method, J. Comput. Electron., 4 (2005), pp. 67-70.
[27] Yan, B. and Caflisch, R., A Monte Carlo method with negative particles for Coulomb collisions, J. Comput. Phys., 298 (2015), pp. 711-740. · Zbl 1349.82131
[28] Silverman, B. W., Density Estimation for Statistics and Data Analysis, Routledge, London, 2018.
[29] Li, D., Yang, K., and Wong, W., Density estimation via discrepancy based adaptive sequential partition, Adv. Neural Inf. Process. Syst., (2016), pp. 1091-1099.
[30] Gnewuch, M., Wahlström, M., and Winzen, C., A new randomized algorithm to approximate the star discrepancy based on threshold accepting, SIAM J. Numer. Anal., 50 (2012), pp. 781-807. · Zbl 1271.65003
[31] Pak, M. V. and Hammes-Schiffer, S., Electron-proton correlation for hydrogen tunneling systems, Phys. Rev. Lett., 92 (2004), 103002.
[32] Carruthers, P. and Zachariasen, F., Quantum collision theory with phase-space distributions, Rev. Mod. Phys., 55 (1983), 245.
[33] Curtright, T. L., Fairlie, D. B., and Zachos, C. K., A Concise Treatise on Quantum Mechanics in Phase Space, World Scientific, River Edge, NJ, 2013.
[34] Xiong, Y. and Shao, S., Overcoming the Numerical Sign Problem in the Wigner Dynamics via Adaptive Particle Annihilation (Supplementary Material (Supplementary_rwnbrs.pdf [615KB] and Supplementary_WBRW_SPADE.pdf [8.43MB])), preprint, arXiv:2008.05161, 2022.
[35] Raviart, P. A., An analysis of particle methods, in Numerical Methods in Fluid Dynamics, Brezzi, F., ed., Springer, New York, 1983, pp. 243-324. · Zbl 0598.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.