×

A random cloud model for the Wigner equation. (English) Zbl 1329.60352

Summary: A probabilistic model for the Wigner equation is studied. The model is based on a particle system with the time evolution of a piecewise deterministic Markov process. Each particle is characterized by a real-valued weight, a position and a wave-vector. The particle position changes continuously, according to the velocity determined by the wave-vector. New particles are created randomly and added to the system. The main result is that appropriate functionals of the process satisfy a weak form of the Wigner equation.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J25 Continuous-time Markov processes on general state spaces
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] L. Breiman, <em>Probability</em>,, Addison-Wesley Publishing Company (1968) · Zbl 0174.48801
[2] M. H. A. Davis, <em>Markov Models and Optimization</em>,, Chapman & Hall (1993) · Zbl 0780.60002 · doi:10.1007/978-1-4899-4483-2
[3] I. M. Gamba, An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation,, Commun. Math. Sci., 7, 635 (2009) · Zbl 1185.65180 · doi:10.4310/CMS.2009.v7.n3.a7
[4] I. M. Gamba, Direct simulation of the uniformly heated granular Boltzmann equation,, Math. Comput. Modelling, 42, 683 (2005) · Zbl 1088.35049 · doi:10.1016/j.mcm.2004.02.047
[5] T. M. M. Homolle, A low-variance deviational simulation Monte Carlo for the Boltzmann equation,, J. Comput. Phys., 226, 2341 (2007) · Zbl 1214.82089 · doi:10.1016/j.jcp.2007.07.006
[6] P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations,, Math. Methods Appl. Sci., 11, 459 (1989) · Zbl 0696.47042 · doi:10.1002/mma.1670110404
[7] P. A. Markowich, An analysis of the quantum Liouville equation,, Z. Angew. Math. Mech., 69, 121 (1989) · Zbl 0682.46047 · doi:10.1002/zamm.19890690303
[8] M. Nedjalkov, Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices,, Phys. Rev. B, 70 (2004) · doi:10.1103/PhysRevB.70.115319
[9] R. I. A. Patterson, A stochastic weighted particle method for coagulation-advection problems,, SIAM J. Sci. Comput., 34 (2012) · Zbl 1250.65014 · doi:10.1137/110843319
[10] R. I. A. Patterson, Stochastic weighted particle methods for population balance equations,, J. Comput. Phys., 230, 7456 (2011) · Zbl 1252.65021 · doi:10.1016/j.jcp.2011.06.011
[11] D. Querlioz, <em>The Wigner Monte Carlo Method for Nanoelectronic Devices</em>,, Wiley (2010) · Zbl 1195.81128 · doi:10.1002/9781118618479
[12] G. A. Radtke, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23, 1 (2011) · doi:10.1063/1.3558887
[13] S. Rjasanow, A stochastic weighted particle method for the Boltzmann equation,, J. Comput. Phys., 124, 243 (1996) · Zbl 0883.65118 · doi:10.1006/jcph.1996.0057
[14] S. Rjasanow, Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation,, Math. Comput. Modelling, 33, 907 (2001) · Zbl 1050.82038 · doi:10.1016/S0895-7177(00)00289-2
[15] J. M. Sellier, A benchmark study of the Wigner Monte Carlo method,, Monte Carlo Methods Appl., 20, 43 (2014) · Zbl 1285.81044 · doi:10.1515/mcma-2013-0018
[16] W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14, 191 (2008) · Zbl 1158.82002 · doi:10.1515/MCMA.2008.010
[17] W. Wagner, A random cloud model for the Schrödinger equation,, Kinetic and Related Models, 7, 361 (2014) · Zbl 1304.35596 · doi:10.3934/krm.2014.7.361
[18] E. Wigner, On the quantum correction for thermodynamic equilibrium,, Phys. Rev., 40, 749 (1932) · JFM 58.0948.07
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.