×

The local Borg-Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials. (English) Zbl 07834252

This paper is concerned with the self-adjoint Dirac-type systems on the interval \([0,b)\), where \(0 < b \leq +\infty\), which have the following form \[ -iJy'(x,z) + V(x) y(x,z) = z y(x,z),\tag{1} \] where \[ y = \left(\begin{matrix} y_1, \ldots, y_m \end{matrix}\right)^\top,\quad J = \left(\begin{matrix} I_{m_1} & 0 \\ 0 & I_{m_2} \end{matrix}\right),\quad V = \left(\begin{matrix} 0 & v \\ v^* & 0 \end{matrix}\right) \] and \(m = m_1 + m_2\), \(m_1, m_2 \in \mathbb{N}\), \(I_{m_k}\), for \(k = 1,2\), is the \(m_k \times m_k\) identity matrix, \(v\) is a \(m_1 \times m_2\) matrix-valued function. The potential \(v\) is assumed summable on \([0,b)\), when \(b < +\infty\), and it is assumed locally summable on \([0,+\infty)\), when \(b = +\infty\).
The main goal of this paper is to show that the potential of system (1) with additional local smoothness conditions is uniquely determined by asymptotics of a Weyl-Titchmarsh function \(M(x,z)\), given by \[ M(x,z) = \psi_{21}(x,z) \psi_{11}(x,z)^{-1},\quad z \in \mathbb{C}_+, \tag{2} \] where \(\psi_{11}\) and \(\psi_{21}\) are \(m_1 \times m_1\) and \(m_2 \times m_1\) matrix-valued functions and \[ \psi(x,z) = \left(\begin{matrix} \psi_{11}(x,z) \\ \psi_{21}(x,z) \end{matrix}\right) \] is the Weyl solution of system (1), that is \(\psi(x,z)\) is square-integrable and satisfies some boundary condition at \(+\infty\), when \(b = +\infty\), and \(\psi\) satisfies some boundary condition at \(b\), when \(b < +\infty\).
The first result of the paper slightly generalizes the well-known local uniqueness theorem for system (1). Let \(c \in \mathbb{R}\) and let \[ \Gamma = \{z : \operatorname{Re}(z) = c \operatorname{Im}(z),\, \operatorname{Im}(z) > 0\}. \] Theorem 3.3. Let \(\tilde{M}(0,z)\) be the Weyl-Titchmarsh function of system (1) with some potential \(\tilde{v}\), given by (2). Suppose that \(a \in (0,b)\). If \[ M(0,z) - \tilde{M}(0,z) = O\left(e^{2iaz}\right) \] as \(|z| \to +\infty\), \(z \in \Gamma\), then \[ v = \tilde{v}\quad \text{a.e. on \([0,a]\)}.\tag{3} \] Conversely, if (3) holds, then \[ M(0,z) - \tilde{M}(0,z) = o\left(e^{2iaz}\right)\tag{4} \] as \(|z| \to +\infty\), \(z \in \mathbb{C}_+\).
Next result is the main result of the paper.
Theorem 4.2. Under the assumptions of Theorem 3.3, if \(v, \tilde{v} \in C^n([a, a + \varepsilon))^{m_1 \times m_2}\) for some \(\varepsilon > 0\), then \[ M(0,z) - \tilde{M}(0,z) = o\left(z^{-(n+1)}e^{2iaz}\right) \] as \(|z| \to +\infty\), \(z \in \Gamma\), if and only if \[ v = \tilde{v}\quad \text{a.e. on \([0,a]\)} \] and \(v^{(p)}(a+) = \tilde{v}^{(p)}(a+)\) for every \(p = 0,1,\ldots,n\), where all \(v^{(p)}(a+)\) denote the \(p\)th right-hand derivative of \(v\) at the point \(a\).

MSC:

34B20 Weyl theory and its generalizations for ordinary differential equations
34A55 Inverse problems involving ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
Full Text: DOI

References:

[1] Arov, DZ; Dym, H., Direct and inverse problems for differentials systems connected with Dirac systems and related factorization problems, Indiana Univ. Math. J., 54, 1769-1815, 2005 · Zbl 1119.47047 · doi:10.1512/iumj.2005.54.2662
[2] Bai, Y.; Wei, G., The local Borg-Marchenko uniqueness theorem for potentials locally smooth at the right endpoint, Integral Equ. Oper. Theory, 91, 1-12, 2019 · Zbl 1485.34082 · doi:10.1007/s00020-019-2529-z
[3] Bennewitz, C., A proof of the local Borg-Marchenko theorem, Commun. Math. Phys., 218, 131-132, 2001 · Zbl 0982.34021 · doi:10.1007/s002200100384
[4] Clark, S.; Gesztesy, F., Weyl-Titchmarsh \(M\)-function asymptotics for matrix-valued Schrödinger operators, Proc. Lond. Math. Soc., 82, 701-724, 2001 · Zbl 1025.34021 · doi:10.1112/plms/82.3.701
[5] Clark, S.; Gesztesy, F., Weyl-Titchmarsh \(M\)-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators, Trans. Am. Math. Soc., 354, 3475-3534, 2002 · Zbl 1017.34019 · doi:10.1090/S0002-9947-02-03025-8
[6] Fritzsche, B., Kirstein, B., Roitberg, I.Ya., Sakhnovich, A.L.: Recovery of the Dirac system from rectangular Weyl matrix function. Inverse Probl. 28, 015010 (2012) · Zbl 1242.34027
[7] Fritzsche, B., Kirstein, B., Roitberg, I.Ya., Sakhnovich, A.L.: Weyl theory and explicit solutions of direct and inverse problems for a Dirac system with rectangular matrix potential. Oper. Matrices 7, 183-196 (2013) · Zbl 1281.34030
[8] Gesztesy, F., Kiselev, A., Roitberg, I.Ya., Makarov, K.A.: Uniqueness results for matrix-valued Schrödinger, Jacobi, and Dirac-type operators. Math. Nachr. 239-240, 103-145 (2002) · Zbl 1017.34020
[9] Gesztesy, F.; Sakhnovich, AL, The inverse approach to Dirac-type systems based on the \(A\)-function concept, J. Funct. Anal., 279, 2020 · Zbl 1470.34053 · doi:10.1016/j.jfa.2020.108609
[10] Gesztesy, F.; Simon, B., On the local Borg-Marchenko uniqueness results, Commun. Math. Phys., 211, 273-287, 2000 · Zbl 0985.34077 · doi:10.1007/s002200050812
[11] Krall, AM, Hilbert Space, Boundary Value Problems and Orthogonal Polynomials, 2000, Basel: Birkhäuser, Basel
[12] Langer, H., Transfer functions and local spectral uniqueness for Sturm-Liouville operators, canonical systems and string, Integral Equ. Oper. Theory, 85, 1-23, 2016 · Zbl 1365.34033 · doi:10.1007/s00020-016-2292-3
[13] Lesch, M.; Malamud, MM, The Inverse Spectral Problem for First Order Systems on the Half Line, 199-238, 2000, Basel: Birkhäuser, Basel · Zbl 0956.34072
[14] Lesch, M.; Malamud, MM, On the deficiency indices and selfadjointness of symmetric Hamiltonian systems, J. Differ. Equ., 189, 556-615, 2003 · Zbl 1016.37026 · doi:10.1016/S0022-0396(02)00099-2
[15] Levitan, BM; Sargsjan, IS, Sturm-Liouville and Dirac Operators, 1991, Dordrecht: Kluwer, Dordrecht · doi:10.1007/978-94-011-3748-5
[16] Malamud, MM, A connection between the potential matrix of the Dirac system and its Wronskian, Dokl. Math., 52, 296-299, 1995 · Zbl 0883.34018
[17] Malamud, MM, Borg-type theorems for first-order systems on a finite interval, Funct. Anal. Appl., 33, 64-68, 1999 · Zbl 0942.34078 · doi:10.1007/BF02465147
[18] Malamud, MM, Uniqueness questions in inverse problems for systems of ordinary differential equations on a finite interval, Trans. Mosc. Math. Soc., 60, 173-224, 1999 · Zbl 0939.34012
[19] Malamud, MM, Unique determination of a system by a part of the monodromy matrix, Funct. Anal. Appl., 49, 264-278, 2015 · Zbl 1350.34025 · doi:10.1007/s10688-015-0115-y
[20] Marchenko, VA, Sturm-Liouville Operators and Applications, 1986, Basel: Birkhäuser, Basel · Zbl 0592.34011 · doi:10.1007/978-3-0348-5485-6
[21] Sakhnovich, AL, Dirac type and canonical systems: spectral and Weyl-Titchmarsh functions, direct and inverse problems, Inverse Probl., 18, 331-348, 2002 · Zbl 1009.34079 · doi:10.1088/0266-5611/18/2/303
[22] Sakhnovich, AL, Inverse problem for Dirac systems with locally square-summable potentials and rectangular Weyl-Titchmarsh functions, J. Spectr. Theory, 5, 547-569, 2015 · Zbl 1329.34040 · doi:10.4171/jst/106
[23] Sakhnovich, A.L., Sakhnovich, L.A., Roitberg, I.Ya.: Inverse Problems and Nonlinear Evolution Equations. Solutions, Darboux Matrices and Weyl-Titchmarsh Functions. Studies in Mathematics, vol. 47. De Gruyter, Berlin (2013) · Zbl 1283.47003
[24] Simon, B., A new approach to inverse spectral theory, I. Fundamental formalism, Ann. Math., 150, 1029-1057, 1999 · Zbl 0945.34013 · doi:10.2307/121061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.