×

Transfer functions and local spectral uniqueness for Sturm-Liouville operators, canonical systems and strings. (English) Zbl 1365.34033

The paper mostly deals with the Sturm-Liouville operator on an interval \([0,l)\), with a self-adjoint boundary condition at one end. The author shows that the transfer function introduced by M.G. Krein is a powerful tool for proving local versions of the Borg-Marchenko uniqueness theorem, namely, for establishing conditions guaranteeing that two potential coincide on some sub-interval \([0,a]\) with \(a<l\). Particularly, the use of the transfer function simplifies the proof of B. Simon’s local versions of the Borg-Marchenko theorem. The application of the transfer function to local spectral uniqueness for other equations, such as canonical systems and string equations, is also discussed.

MSC:

34A55 Inverse problems involving ordinary differential equations
34B20 Weyl theory and its generalizations for ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
47A11 Local spectral properties of linear operators
47B32 Linear operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces)

References:

[1] Bennewitz C.: A proof of the local Borg-Marchenko theorem. Commun. Math. Phys. 218, 131-132 (2001) · Zbl 0982.34021 · doi:10.1007/s002200100384
[2] De Branges L.: Hilbert Spaces of Entire Functions. Prentice-Hall inc., Englewood Cliffs (1968) · Zbl 0157.43301
[3] Freiling G., Yurko V.: Inverse Sturm-Liouville Problems and their Applications. Nova Science Publishers, Inc., Huntington (2001) · Zbl 1037.34005
[4] Gesztesy F., Simon B.: A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure. Ann. Math. 152(2), 593-643 (2000) · Zbl 0983.34013 · doi:10.2307/2661393
[5] Kac, I.S.: Linear relations, generated by a canonical differential equation on an interval with a regular endpoint, and expansibility in eigenfunctions. (Russian), deposited in Ukr NIINTI, No. 1453 (1984) (VINITI Deponirovannye Naučnye Raboty, No. 1 (195), b.o. 720, 1985). · Zbl 0945.34013
[6] Kac I.S., Kreǐn M.G.: R-functions. Analytic functions mapping the upper half plane into itself. Am. Math. Soc. Transl. 103(2), 1-18 (1974) · Zbl 0291.34016
[7] Kac I.S., Kreǐn M.G.: On the spectral functions of the string. Am. Math. Soc. Transl. 103(2), 19-101 (1974) · Zbl 0291.34017
[8] Kreǐn, M.G.: On a general method of decomposing Hermite-positive nuclei into elementary products. C. R. (Doklady) Acad. Sci. URSS (N.S.) 53 (1946), 3-6. In: Kreǐn, M.G. (ed.) Izbrannye trudy. I. (Russian) [Selected works. I], pp. 249-254, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1993 · Zbl 0063.03359
[9] Kreǐn, M.G.: On hermitian operators with directed functionals. (Ukrainian) Akad. Nauk Ukrain. RSR. Zbirnik Prac Inst. Mat. 1948, (1948). no. 10, 83-106. In: Kreǐn, M.G. (ed.) Izbrannye trudy. II. (Russian) [Selected works. II], pp. 172-203, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1996
[10] Kreǐn, M.G.: On the transfer function of a one-dimensional boundary problem of the second order. (Russian) Doklady Akad. Nauk SSSR (N.S.) 88 (1953), 405-408. In: Kreǐn, M.G. (ed.) Izbrannye trudy. III. (Russian) [Selected works. III], pp. 81-86, Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1997
[11] Kreǐn M.G., Langer H.: Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume zusammenhängen. II. Verallgemeinerte Resolventen, u-Resolventen und ganze Operatoren. J. Funct. Anal. 30, 390-447 (1978) · Zbl 0423.47008 · doi:10.1016/0022-1236(78)90064-2
[12] Kreǐn M.G., Langer H.: On some continuation problems which are closely related to the theory of operators in spaces \[{\Pi_{\kappa}}\] Πκ. IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions. J. Oper. Theory 13, 299-417 (1985) · Zbl 0608.47038
[13] Kreǐn M.G., Langer H.: Continuation of Hermitian positive definite functions and related questions. Integral Equ. Oper. Theory 78, 1-69 (2014) · Zbl 1306.47022 · doi:10.1007/s00020-013-2091-z
[14] Langer H.: Über die Methode der richtenden Funktionale von M. G. Krein. Acta Math. Acad. Sci. Hungar. 21, 207-224 (1970) · Zbl 0232.47007 · doi:10.1007/BF02022503
[15] Langer H., Langer M., Sasvári Z.: Continuations of hermitian indefinite functions and corresponding canonical systems: an example. Methods Funct. Anal. Topol. 10 1, 39-53 (2004) · Zbl 1066.47010
[16] Langer M., Woracek H.: A local inverse spectral theorem for Hamiltonian systems. Inverse Probl. 27(5), 055002,17 (2011) · Zbl 1220.34019
[17] Levitan B.M.: Generalized Shift Operators and Some of Their Applications. (Russian) Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1962) · Zbl 0231.47020
[18] Levitan B.M., Gasymov M.G.: Determination of a differential equation by two spectra. (Russian) Uspehi Mat Nauk. 19, 3-63 (1964) · Zbl 0145.10903
[19] Marčenko V.A.: Spectral theory of Sturm-Liouville operators. (Russian) Naukova Dumka, Kiev (1972) · Zbl 0265.34029
[20] Simon B.: A new approach to inverse spectral theory. I. Fundamental formalism. Ann. Math. 150(2), 1029-1057 (1999) · Zbl 0945.34013 · doi:10.2307/121061
[21] Weidmann: Lineare Operatoren in Hilberträumen, Teil II: Anwendungen. Teubner-Verlag, Leipzig (2003)
[22] Winkler H.: The inverse spectral problem for canonical systems. Integr. Equ. Oper. Theory. 22, 360-374 (1995) · Zbl 0843.34031 · doi:10.1007/BF01378784
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.