×

On the regularity theory for mixed local and nonlocal quasilinear parabolic equations. (English) Zbl 07834220

The weak subsolutions and supersolutions of very general parabolic nonlocal equations \[ \frac{\partial u}{\partial t}+ \mathcal{L}_p u(x,t)- \operatorname{div}\mathcal{B}_p(x,t,u,\nabla u)= g(x,t,u) \] are studied in space \(\times\) time cylinders \(\Omega\times(0,T)\), where \(\Omega\subset\mathbb{R}^N\). A special case is the equation with the operators \[ \mathcal{L}_p u(x,t)= \int_{\mathbb{R}^N} \frac{|u(x,t)- u(y,t)|^{p-2}(u(x,t)- u(y,t))}{|x-y|^{N+ps}}\,dy, \] where \(0<s<1\), \(1<p<\infty\) (the principal value of the integral is taken), and \[ \mathcal{B}_p(x,t,u,\nabla u)= |\nabla u|^{p-2}\nabla u. \] (There is a misprint in formula (1.2), defining \(\mathcal{L}_p\).)
The weak subsolutions are proved to be locally bounded. The theorem comes with an estimate; the cases \(2N/(N+2)<p\) and \(1<p\le 2N/(N+2)\) have somewhat different bounds.
The semicontinuity and pointwise behaviour of the weak supersolutions is studied for the pointwise defined representation \[ u(x,t)=\operatorname{ess}\liminf_{\substack{(y,\tau)\to(x,t)\\ \tau<t}} u(y,\tau). \] The assumption \(g=0\) is required for the deeper results. Energy estimates and a technically advanced variant of De Giorgi’s method are used.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs
35K59 Quasilinear parabolic equations
35R09 Integro-partial differential equations

References:

[1] A. BANERJEE, P. GARAIN and J. KINNUNEN, Some local properties of subsolutions and supersolutions for a doubly nonlinear nonlocal parabolic p-Laplace equation, Ann. Mat. Pura Appl. (4) 201 (2022), 1717-1751. · Zbl 1495.35052
[2] A. BANERJEE, P. GARAIN and J. KINNUNEN, Lower semicontinuity and pointwise behav-ior of supersolutions for some doubly nonlinear nonlocal parabolic p-Laplace equations, Commun. Contemp. Math. 25 (2023) Paper No. 2250032, 23 pp. · Zbl 1521.35113
[3] M. T. BARLOW, R. F. BASS, Z.-Q. CHEN and M. KASSMANN, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc. 361 (2009), 1963-1999. · Zbl 1166.60045
[4] M. BELLONI, V. FERONE and B. KAWOHL, Isoperimetric inequalities, Wulff shape and re-lated questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54 (2003), 771-783. Special issue dedicated to L. E. Payne. · Zbl 1099.35509
[5] M. BELLONI and B. KAWOHL, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p ! 1, ESAIM Control Optim. Calc. Var. 10 (2004), 28-52. · Zbl 1092.35074
[6] S. BIAGI, S. DIPIERRO, E. VALDINOCI and E. VECCHI, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), 585-629. · Zbl 1486.35412
[7] S. BIAGI, S. DIPIERRO, E. VALDINOCI and E. VECCHI, Semilinear elliptic equations involving mixed local and nonlocal operators, Comm. Partial Differential Equations 47 (2022), 585-629. · Zbl 1486.35412
[8] S. BIAGI, S. DIPIERRO, E. VALDINOCI and E. VECCHI, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, Math. Eng. 5 (2023), Paper No. 014, 25 pp. · Zbl 07817649
[9] S. BIAGI, D. MUGNAI and E. VECCHI, A Brezis-Oswald approach to mixed local and nonlocal operators, preprint (2021), arXiv: 2013.11382.
[10] L. BRASCO and E. LINDGREN, Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case, Adv. Math. 304 (2017), 300-354. · Zbl 1364.35055
[11] L. BRASCO, E. LINDGREN and E. PARINI, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), 419-458. · Zbl 1301.49115
[12] L. BRASCO, E. and A. SCHIKORRA, Higher Hölder regularity for the frac-tional p-Laplacian in the superquadratic case, Adv. Math. 338 (2018), 782-846. · Zbl 1400.35049
[13] L. BRASCO, E. LINDGREN and M. STR ÖMQVIST, Continuity of solutions to a nonlinear fractional diffusion equation, J. Evol. Equ. 21 (2021), 4319-4381. · Zbl 1486.35084
[14] L. BRASCO and E. PARINI, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9 (2016), 323-355. · Zbl 1349.35263
[15] S. BUCCHERI, J. V. DA SILVA and L. H. DE MIRANDA, A system of local/nonlocal p-Laplacians: the eigenvalue problem and its asymptotic limit as p ! 1, Asymptot. Anal. 128 (2022), 149-181. · Zbl 1507.35094
[16] V. B ÖGELEIN, F. DUZAAR and N. LIAO, On the Hölder regularity of signed solutions to a doubly nonlinear equation, J. Funct. Anal. 218 (2021), Paper No. 109173, 58 pp. · Zbl 1473.35083
[17] Z. Q. CHEN, P. KIM, R. SONG and Z. VONDRA ČEK, Boundary Harnack principle for Å C Å ˛=2 , Trans. Amer. Math. Soc. 364 (2012), 4169-4205. · Zbl 1271.31006
[18] Z. Q. CHEN and T. KUMAGAI, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps, Rev. Mat. Iberoam. 26 (2010), 551-589. · Zbl 1200.60065
[19] A. DI CASTRO, T. KUUSI and G. PALATUCCI, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016), 1279-1299. · Zbl 1355.35192
[20] J. V. DA SILVA and A. M. SALORT, A limiting problem for local/non-local p-Laplacians with concave-convex nonlinearities, Z. Angew. Math. Phys. 71 (2020), Paper No. 191, 27 pp. · Zbl 1471.35165
[21] E. DI NEZZA, G. PALATUCCI and E. VALDINOCI, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573. · Zbl 1252.46023
[22] E. DIBENEDETTO, “Degenerate Parabolic Equations”, Universitext, Springer-Verlag, New York, 1993. · Zbl 0794.35090
[23] E. DIBENEDETTO, U. GIANAZZA and V. VESPRI, “Harnack”s Inequality for Degenerate and Singular Parabolic Equations”, Springer Monographs in Mathematics, Springer, New York, 2012.
[24] M. DING, C. ZHANG and S. ZHOU, Local boundedness and Hölder continuity for the parabolic fractional p-Laplace equations, Calc. Var. Partial Differential Equations 60 (2021), Paper No. 38, 45 pp. · Zbl 1459.35053
[25] S. DIPIERRO, E. PROIETTI LIPPI and E. VALDINOCI, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (2022), 571-594. · Zbl 1506.35248
[26] S. DIPIERRO, E. PROIETTI LIPPI and E. VALDINOCI, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), 1093-1166. · Zbl 1527.35436
[27] S. DIPIERRO, X. ROS-OTON, J. SERRA and E. VALDINOCI, Non-symmetric stable opera-tors: regularity theory and integration by parts, Adv. Math. 401 (2022), Paper No. 108321, 100 pp. · Zbl 1490.45011
[28] S. DIPIERRO and E. VALDINOCI, Description of an ecological niche for a mixed lo-cal/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A. 575 (2021), paper No. 126052, 20 pp. · Zbl 1528.60037
[29] L. C. EVANS, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[30] M. FOONDUN, Heat kernel estimates and Harnack inequalities for some Dirichlet forms with non-local part, Electron. J. Probab. 14 (2009), 314-340. · Zbl 1190.60069
[31] P. GARAIN and J. KINNUNEN, On the regularity theory for mixed local and nonlocal quasi-linear elliptic equations, Trans. Amer. Math. Soc. 375 (2022), 5393-5423. · Zbl 1496.35118
[32] P. GARAIN and J. KINNUNEN, Weak Harnack inequality for a mixed local and nonlocal parabolic equation, J. Differential Equations 360 (2023), 373-406. · Zbl 1520.35022
[33] P. GARAIN and A. UKHLOV, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal. 223 (2022), Paper No. 113022, 35 pp. · Zbl 1495.35010
[34] K. HO and I. SIM, Corrigendum to Existence and some properties of solutions for de-generate elliptic equations with exponent variable [Nonlinear Anal. 98 (2014), 146-164] Nonlinear Anal. 128 (2015), 423-426. · Zbl 1331.35144
[35] M. KASSMANN, A new formulation of Harnack’s inequality for nonlocal operators, C. R. Math. Acad. Sci. Paris 349 (2011), 637-640. · Zbl 1236.31003
[36] J. KINNUNEN and P. LINDQVIST, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl. (4) 185 (2006), 411-435. · Zbl 1232.35080
[37] T. KUUSI, Lower semicontinuity of weak supersolutions to nonlinear parabolic equations, Differential Integral Equations 22 (2009),1211-1222. · Zbl 1240.35220
[38] N. LIAO, Regularity of weak supersolutions to elliptic and parabolic equations: lower semicontinuity and pointwise behavior, J. Math. Pures Appl. (9) 147 (2021), 179-204. · Zbl 1464.35050
[39] J. MAL Ý and W. P. ZIEMER, “Fine Regularity of Solutions of Elliptic Partial Differen-tial Equations”, Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, Providence, RI, 1997. · Zbl 0882.35001
[40] J. M. MAZ ÓN, J. D. ROSSI and J. TOLEDO, Fractional p-Laplacian evolution equations, J. Math. Pures Appl. (9) 105 (2016), 810-844. · Zbl 1338.45009
[41] B. SHANG, Y. FANG and C. ZHANG, Regularity theory for mixed local and nonlocal parabolic p-Laplace equations, J. Geom. Anal. 32 (2022), Paper No. 22, 33 pp. · Zbl 1479.35160
[42] M. STR ÖMQVIST, Local boundedness of solutions to non-local parabolic equations mod-eled on the fractional p-Laplacian, J. Differential Equations 266 (2019), 7948-7979. · Zbl 1445.35093
[43] J. L. V ÁZQUEZ, The evolution fractional p-Laplacian equation in R N . Fundamental so-lution and asymptotic behaviour, Nonlinear Anal. 199 (2020), Paper No. 112034, 32 pp. · Zbl 1447.35205
[44] C. XIA, “On a Class of Anisotropic Problems”, Dissertation zur Erlangung des Dok-torgrades der Fakultät Mathematik und Physik der Albert-Ludwigs-Universität tFreiburg, 2012. https://freidok.uni-freiburg.de/fedora/objects/freidok:8693/datastreams/FILE1/content. · Zbl 1252.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.