×

A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators. (English) Zbl 07817649

Summary: Given a bounded open set \(\Omega\subseteq{\mathbb{R}}^n \), we consider the eigenvalue problem for a nonlinear mixed local/nonlocal operator with vanishing conditions in the complement of \(\Omega \). We prove that the second eigenvalue \(\lambda_2(\Omega)\) is always strictly larger than the first eigenvalue \(\lambda_1(B)\) of a ball \(B\) with volume half of that of \(\Omega \). This bound is proven to be sharp, by comparing to the limit case in which \(\Omega\) consists of two equal balls far from each other. More precisely, differently from the local case, an optimal shape for the second eigenvalue problem does not exist, but a minimizing sequence is given by the union of two disjoint balls of half volume whose mutual distance tends to infinity.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R11 Fractional partial differential equations

References:

[1] N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal., 53 (2021), 3577-3601. http://dx.doi.org/10.1137/20M1342641 · Zbl 1479.35443 · doi:10.1137/20M1342641
[2] F. J. Almgren, E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. http://dx.doi.org/10.1090/S0894-0347-1989-1002633-4 · Zbl 0688.46014 · doi:10.1090/S0894-0347-1989-1002633-4
[3] R. Bañuelos, R. Latała, P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc., 129 (2001), 2997-3008. http://dx.doi.org/10.1090/S0002-9939-01-06137-8 · Zbl 0974.60037 · doi:10.1090/S0002-9939-01-06137-8
[4] G. Barles, C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585. http://dx.doi.org/10.1016/j.anihpc.2007.02.007 · Zbl 1155.45004 · doi:10.1016/j.anihpc.2007.02.007
[5] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Part. Diff. Eq., in press. http://dx.doi.org/10.1080/03605302.2021.1998908 · Zbl 1486.35412
[6] S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinb. A, 151 (2021), 1611-1641. http://dx.doi.org/10.1017/prm.2020.75 · Zbl 1473.35622 · doi:10.1017/prm.2020.75
[7] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math., in press.
[8] S. Biagi, D. Mugnai, E. Vecchi, Global boundedness and maximum principle for a Brezis-Oswald approach to mixed local and nonlocal operators, 2021, arXiv: 2103.11382.
[9] L. Brasco, E. Cinti, S. Vita, A quantitative stability estimate for the fractional Faber-Krahn inequality, J. Funct. Anal., 279 (2020), 108560. http://dx.doi.org/10.1016/j.jfa.2020.108560 · Zbl 1501.35266 · doi:10.1016/j.jfa.2020.108560
[10] L. Brasco, G. Franzina, On the Hong-Krahn-Szego inequality for the \(p\)-Laplace operator, Manuscripta Math., 141 (2013), 537-557. http://dx.doi.org/10.1007/s00229-012-0582-x · Zbl 1317.35149 · doi:10.1007/s00229-012-0582-x
[11] L. Brasco, E. Lindgren, E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458. http://dx.doi.org/10.4171/IFB/325 · Zbl 1301.49115 · doi:10.4171/IFB/325
[12] L. Brasco, E. Lindgren, A. Schikorra, Higher Hölder regularity for the fractional \(p\)-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846. http://dx.doi.org/10.1016/j.aim.2018.09.009 · Zbl 1400.35049 · doi:10.1016/j.aim.2018.09.009
[13] L. Brasco, E. Parini, The second eigenvalue of the fractional \(p\)-Laplacian, Adv. Calc. Var., 9 (2016), 323-355. http://dx.doi.org/10.1515/acv-2015-0007 · Zbl 1349.35263 · doi:10.1515/acv-2015-0007
[14] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. http://dx.doi.org/10.1007/978-0-387-70914-7 · Zbl 1220.46002
[15] S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems, 30 (1998), 107-117.
[16] X. Cabré, S. Dipierro, E. Valdinoci, The Bernstein technique for integro-differential equations, Arch. Rational Mech. Anal., 243 (2022), 1597-1652. http://dx.doi.org/10.1007/s00205-021-01749-x · Zbl 1491.35077 · doi:10.1007/s00205-021-01749-x
[17] Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle for \(\Delta + \Delta^{\alpha/2}\), Trans. Amer. Math. Soc., 364 (2012), 4169-4205. http://dx.doi.org/10.1090/S0002-9947-2012-05542-5 · Zbl 1271.31006 · doi:10.1090/S0002-9947-2012-05542-5
[18] A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836. http://dx.doi.org/10.1016/j.jfa.2014.05.023 · Zbl 1302.35082 · doi:10.1016/j.jfa.2014.05.023
[19] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[20] S. Dipierro, E. Proietti Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptotic Anal., in press. http://dx.doi.org/10.3233/ASY-211718
[21] S. Dipierro, E. Proietti Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. · Zbl 1527.35436
[22] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Physica A, 575 (2021), 126052. http://dx.doi.org/10.1016/j.physa.2021.126052 · Zbl 1528.60037 · doi:10.1016/j.physa.2021.126052
[23] B. C. dos Santos, S. M. Oliva, J. D. Rossi, A local/nonlocal diffusion model, Appl. Anal., in press. http://dx.doi.org/10.1080/00036811.2021.1884227 · Zbl 1497.35046
[24] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, München: Sitzungsberichte, 1923,169-172. · JFM 49.0342.03
[25] R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407-3430. http://dx.doi.org/10.1016/j.jfa.2008.05.015 · Zbl 1189.26031 · doi:10.1016/j.jfa.2008.05.015
[26] G. Franzina, G. Palatucci, Fractional \(p\)-eigenvalues, Riv. Math. Univ. Parma, 5 (2014), 373-386. · Zbl 1327.35286
[27] P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, 2021, arXiv: 2108.02986.
[28] J. Giacomoni, D. Kumar, K. Sreenadh, Global regularity results for non-homogeneous growth fractional problems, J. Geom. Anal., 32 (2022), 36. http://dx.doi.org/10.1007/s12220-021-00837-4 · Zbl 1485.35192 · doi:10.1007/s12220-021-00837-4
[29] D. Goel, K. Sreenadh, On the second eigenvalue of combination between local and nonlocal \(p\)-Laplacian, Proc. Amer. Math. Soc., 147 (2019), 4315-4327. http://dx.doi.org/10.1090/proc/14542 · Zbl 1425.35131 · doi:10.1090/proc/14542
[30] D. Hilbert, Grundzüge einer allgeminen Theorie der linaren Integralrechnungen. (Erste Mitteilung), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physika lische Klasse, 1904, 49-91. · JFM 35.0378.02
[31] I. Hong, On an inequality concerning the eigenvalue problem of membrane, Kōdai Math. Sem. Rep., 6 (1954), 113-114. http://dx.doi.org/10.2996/kmj/1138843535 · Zbl 0057.08805 · doi:10.2996/kmj/1138843535
[32] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 94 (1925), 97-100. http://dx.doi.org/10.1007/BF01208645 · JFM 51.0356.05 · doi:10.1007/BF01208645
[33] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Univ. Dorpat A, 9 (1926), 1-44. · JFM 52.0510.03
[34] T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Commun. Math. Phys., 337 (2015), 1317-1368. http://dx.doi.org/10.1007/s00220-015-2356-2 · Zbl 1323.45007 · doi:10.1007/s00220-015-2356-2
[35] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795-826. http://dx.doi.org/10.1007/s00526-013-0600-1 · Zbl 1292.35193 · doi:10.1007/s00526-013-0600-1
[36] G. Pagnini, S. Vitali, Should I stay or should I go? Zero-size jumps in random walks for Lévy flights, Fract. Calc. Appl. Anal., 24 (2021), 137-167. http://dx.doi.org/10.1515/fca-2021-0007 · Zbl 1474.60124 · doi:10.1515/fca-2021-0007
[37] G. Pólya, On the characteristic frequencies of a symmetric membrane, Math. Z., 63 (1955), 331-337. http://dx.doi.org/10.1007/BF01187944 · Zbl 0065.08703 · doi:10.1007/BF01187944
[38] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton, N.J.: Princeton University Press, 1951. · Zbl 0044.38301
[39] A. M. Salort, E. Vecchi, On the mixed local-nonlocal Hénon equation, 2021, arXiv: 2107.09520.
[40] R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445-2464. http://dx.doi.org/10.3934/cpaa.2013.12.2445 · Zbl 1302.35413 · doi:10.3934/cpaa.2013.12.2445
[41] Y. Sire, J. L. Vázquez, B. Volzone, Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application, Chin. Ann. Math. Ser. B, 38 (2017), 661-686. http://dx.doi.org/10.1007/s11401-017-1089-2 · Zbl 1515.35078 · doi:10.1007/s11401-017-1089-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.