×

On generalizations of Stirling numbers and some well-known matrices. (English) Zbl 07833969

Summary: We introduce a generalization of the Stirling numbers of the first kind and the second kind. By arranging these numbers into matrices, we generalize the Stirling matrices of the first kind and the second kind investigated by G.-S. Cheon and J.-S. Kim [Linear Algebra Appl. 329, No. 1–3, 49–59 (2001; Zbl 0988.05009)]. Furthermore, we introduce generalizations of the Pascal matrix and the symmetric Pascal matrix with two real arguments, and generalize earlier results related to the Pascal matrices, Stirling matrices and matrices involving Bell numbers.

MSC:

11B73 Bell and Stirling numbers
05A10 Factorials, binomial coefficients, combinatorial functions
15A23 Factorization of matrices
15A24 Matrix equations and identities
15B05 Toeplitz, Cauchy, and related matrices
33C05 Classical hypergeometric functions, \({}_2F_1\)

Citations:

Zbl 0988.05009
Full Text: DOI

References:

[1] R. Aggarwala and M.P. Lamoureux: Inverting the Pascal matrix plus one. Amer. Math. Monthly 109 (2002), 371-377. · Zbl 1027.15012
[2] M. Bayat: Generalized Pascal k-eliminated functional matrix with 2n variables. Elec-tron. J. Linear Algebra 22 (2011), 419-429. · Zbl 1223.15039
[3] G.S. Call and D.J. Velleman: Pascal matrices. Amer. Math. Monthly 100 (1993), 372-376. · Zbl 0788.05011
[4] M. Can and M. C. Daǧlı: Extended Bernoulli and Stirling matrices and related combinatorial identities. Linear Algebra Appl. 444 (2014), 114-131. · Zbl 1285.05013
[5] V. Chaurasia and H. Parihar: On Generalized Stirling Numbers and Polynomials. Adv. in Appl. Math. 2 (2007), 9 -13 · Zbl 1213.11055
[6] G. S. Cheon and J. S. Kim: Stirling matrix via Pascal matrix. Linear Algebra Appl. 329 (2001), 49-59. · Zbl 0988.05009
[7] G. S. Cheon, J. S. Kim and H. W. Yoon: A note on Pascal’s matrix. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6 (1999), 121-127.
[8] G. S. Cheon and J. S. Kim: Factorial Stirling matrix and related combinatorial sequences. Linear Algebra Appl. 357 (2002), 247-258. · Zbl 1016.05004
[9] G. S. Cheon and M. E. Mikkawy: Extended symmetric Pascal matrices via hyper-geometric functions. Appl. Math. Comput. 158 (2004), 159-168. · Zbl 1071.33009
[10] H. Cobo: The Pascal matrix in the multivariate Riordan group. Linear Algebra Appl. 635 (2022), 1-23. · Zbl 1486.15036
[11] L. Comtet: Advanced Combinatorics. Reidel, Dordrecht, 1974. · Zbl 0283.05001
[12] Ö. Devecı˙and E. Karaduman: The cyclic groups via the Pascal matrices and the generalized Pascal matrices. Linear Algebra Appl. 437 (10) (2012), 2538-2545. · Zbl 1262.05002
[13] B. S. Desouky, N. Cakić and T. Mansour: Modified approach to generalized Stir-ling numbers via differential operators. Appl. Math. Lett. 23 (2010), 115-120. · Zbl 1230.05025
[14] P. K. Doh, K. H. Adjallah and B. Birregah: Thirty-six full matrix forms of the Pascal triangle: Derivation and symmetry relations. Sci. Afr. 13 (2021) e00932.
[15] R. L. Graham, D. E. Knuth and O. Patashnik: Concrete mathematics: a founda-tion for computer science. Addison-Wesley, 1994. · Zbl 0836.00001
[16] A. Edelman and G. Strang: Pascal matrices. Amer. Math. Monthly 111 (2004), 189-197. · Zbl 1089.15025
[17] M. Griffiths and I. Mező: A generalization of Stirling numbers of the second kind via a special multiset. J. Integer Seq. 13 (2010), Article 10.2.5. · Zbl 1228.05035
[18] L. Hsu and P. Shiue: A unified approach to generalized Stirling numbers. Adv. in Appl. Math. 20 (1998), 366-384. · Zbl 0913.05006
[19] W. Lang: Combinatorial Interpretation of Generalized Stirling Numbers. J. Integer Seq. 12 (2009), Article 09.3.3. · Zbl 1165.05307
[20] P. Maltais and T. A. Gulliver: Pascal matrices and Stirling numbers. Appl. Math. Letters 11 (2) (1998), 7-11. · Zbl 1337.15023
[21] R. Merris: The p-Stirling numbers. Turkish J. Math. 24 (2000), 379-399. · Zbl 0970.05003
[22] M. E. Mikkawy: On a connection between the Pascal, Vandermonde and Stirling matrices -I. Appl. Math. Comput. 145 (2003), 23-32. · Zbl 1045.15013
[23] M. E. Mikkawy: On a connection between the Pascal, Vandermonde and Stirling matrices -II. Appl. Math. Comput. 146 (2003), 759-769. · Zbl 1045.15014
[24] M. E. Mikkawy and B. Desouky: On a connection between symmetric polynomials, generalized Stirling numbers and the Newton general divided difference interpolation polynomial. Appl. Math. Comput. 138 (2003), 375-385. · Zbl 1043.41005
[25] A. Moghaddamfar and S. Pooya: Generalized Pascal triangles and Toeplitz matri-ces. Electron. J. Linear Algebra 18 (2009), 564-588. · Zbl 1190.15006
[26] C. Mortici: Best estimates of the generalized Stirling formula. Appl. Math. Comput. 215 (2010), 4044-4048. · Zbl 1186.33003
[27] A. Nikseresht, M. B. Khormaei and S. Namazi: A generalization of the pascal matrix and an application to coding theory. Linear Multilinear Algebra (2023), DOI: 10.1080/03081087.2023.2187015. · Zbl 07870721 · doi:10.1080/03081087.2023.2187015
[28] J. Remmel and M. Wachs: Rook Theory, Generalized Stirling Numbers and (p; q)-analogues. Electron. J. Combin. 11 (2004), # R84. · Zbl 1065.05018
[29] M. Spivey and A. Zimmer: Symmetric polynomials, Pascal matrices and Stirling matrices. Linear Algebra Appl. 428 (2008), 1127-1134. · Zbl 1136.15017
[30] S. Stanimirović: A generalization of the Pascal matrix and its properties. Facta Universitatis, Ser. Math. Inform. 26 (2011), 17-27. · Zbl 1299.15037
[31] P. Stanimirović and S. Stanimirović: Inverting linear combinations of identity and generalized Catalan matrices. Linear Algebra Appl. 433 (2010), 1472-1480. · Zbl 1202.15034
[32] C. Wagner: Generalized Stirling and Lah numbers. Discrete Math. 160 (1996), 199-218. · Zbl 0860.05007
[33] W. Wang: Generalized higher order Bernoulli number pairs and generalized Stirling number pairs. J. Math. Anal. Appl. 364 (2010), 255-274. · Zbl 1221.11061
[34] W. Wang and T. Wang: Identities via Bell matrix and Fibonacci matrix. Discrete Appl. Math. 156 (2008), 2793-2803. · Zbl 1152.15019
[35] S.-L. Yang and H. You: On a connection between the Pascal, Stirling and Vander-monde matrices. Discrete Appl. Math. 155 (2007), 2025-2030. · Zbl 1126.15021
[36] Y. Yang: Generalized Leibniz functional matrices and factorizations of some well-known matrices. Linear Algebra Appl. 430 (2009), 511-531. · Zbl 1157.15028
[37] Y. Yang and C. Micek: Generalized Pascal functional matrix and its applications. Linear Algebra Appl. 423 (2007), 230-245. · Zbl 1115.15012
[38] Z. Zhang: The linear algebra of the generalized Pascal matrices. Linear Algebra Appl. 250 (1997), 51-60. · Zbl 0873.15014
[39] Z. Zhang and M. Liu: An extension of the generalized Pascal matrix and its algebraic properties. Linear Algebra Appl. 271 (1998), 169-177. · Zbl 0892.15018
[40] Z. Zhang and T. Wang: Generalized Pascal matrix and recurrence sequences. Linear Algebra Appl. 283 (1998), 289-299. · Zbl 1067.15502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.