×

Generalized Leibniz functional matrices and factorizations of some well-known matrices. (English) Zbl 1157.15028

Let \(f(t)\) be a function such that the \(n\)th derivative \(f^{(n)}(t)\) exists. Then the \((n+1)\times(n+1)\) Leibniz functional matrix \(L_n[f(t)]\) has entries \((L_n[f(t)])_{ij}=\frac{f^{(i-j)}(t)}{(i-j)!}\) if \(i\geq j\) and \((L_n[f(t)])_{ij}= 0\) otherwise. This paper introduces generalized Leibniz functional matrices as follows. Let \(f_0(t), \dots, f_n(t)\) and \(g_0(t), \dots, g_n(t)\) be functions such that their \(n\)th derivatives exist. Then the entries of the generalized Leibniz functional matrix with varying rows and columns are
\[ (L_{n}^{V}[f_0(t),\dots,f_n(t);g_0(t), \dots, g_n(t)])_{ij}=\frac{(f_i(t)g_j(t))^{(i-j)}}{(i-j)!} \]
if \(i\geq j\) and \(0\) otherwise. If \(g_0(t)=\cdots=g_n(t)=1\), then one has generalized Leibniz functional matrix with varying rows, denoted by \(L_{n}^{R}[f_0(t),\dots,f_n(t)]\). Similarly, \(L_{n}^{C}[g_0(t), \dots, g_n(t)] =L_{n}^{V}[1,\dots,1;g_0(t), \dots, g_n(t)]\) are generalized Leibniz functional matrices with varying columns.
Some properties of generalized Leibniz functional matrices are explored. For instance, it is proved that \[ L_{n}^{R}[f_0(t),\dots,f_n(t)] L_{n}^{C}[g_0(t), \dots, g_n(t)]=L_{n}^{V}[f_0(t),\dots,f_n(t);g_0(t), \dots, g_n(t)]. \]
This and similar factorization properties of generalized Leibniz functional matrices are applied in factorization of some well-known matrices: complete symmetric polynomial matrix, elementary symmetric polynomial matrix, Pascal matrix, Stirling matrices etc.

MSC:

15A54 Matrices over function rings in one or more variables
15A23 Factorization of matrices
05E05 Symmetric functions and generalizations
Full Text: DOI

References:

[1] Brawer, R.; Pirovino, M., The linear algebra of the Pascal matrix, Linear Algebra Appl., 174, 13-23 (1992) · Zbl 0755.15012
[2] Cheon, G.-S.; Kim, J.-S., Stirling matrix via Pascal matrix, Linear Algebra Appl., 329, 49-59 (2001) · Zbl 0988.05009
[3] Cheon, G.-S.; Kim, J.-S.; Cho, S.-H., Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 130, 527-534 (2003) · Zbl 1020.05016
[4] Hoggatt, V.; Bicknell, M., Pascal, Catalan, and general sequence convolution arrays in a matrix, Fibonacci Quart., 14, 2, 135-143 (1976) · Zbl 0366.05012
[5] Kalman, D.; Ungar, A., Combinatorial and functional identities in one-parameter matrices, Amer. Math. Monthly, 94, 1, 21-35 (1987) · Zbl 0622.05002
[6] Olver, P., On multivariate interpolation, Stud. Appl. Math., 116, 201-240 (2006) · Zbl 1145.41311
[7] Call, G.; Velleman, D., Pascal’s matrices, Amer. Math. Monthly, 100, 372-376 (1993) · Zbl 0788.05011
[8] Spivey, M.; Zimmer, A., Symmetric polynomials, Pascal matrices, and Stirling matrices, Linear Algebra Appl., 428, 1127-1134 (2008) · Zbl 1136.15017
[9] Sprugnoli, R., Riordan arrays and combinatorial sums, Discrete Math., 132, 267-290 (1994) · Zbl 0814.05003
[10] Yang, S.; Qiao, Z., Stirling matrix and its property, Int. J. Appl. Math., 14, 2, 145-157 (2003) · Zbl 1056.15020
[11] Yang, S., On the LU factorization of the Vandermonde matrix, Discrete Appl. Math., 146, 102-105 (2005) · Zbl 1065.15014
[12] Zhang, Z.; Liu, M., An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl., 271, 169-177 (1998) · Zbl 0892.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.