×

On the radial growth of ballistic aggregation and other aggregation models. (English) Zbl 07832558

In this paper the authors study study the growth of the clusters for a class of aggregation models on the integer lattice \(\mathbb{Z} ^d, d \geqslant 2\), in which clusters are formed by particles arriving one after the other and sticking irreversibly where they first hit the cluster, including the classical model of diffusion-limited aggregation. The authors observe that a method of Kesten used to obtain an almost sure upper bound on the radial growth in the diffusion-limited aggregation model generalizes to a large class of such models. The authors use it in particular to prove such a bound for the so-called ballistic model, in which the arriving particles travel along straight lines. Moreover the bound implies that the fractal dimension of ballistic aggregation clusters in \(\mathbb{Z} ^2\) is \(2\), and in this way the authors provide a proof for a long standing conjecture in the physics literature.

MSC:

82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60D05 Geometric probability and stochastic geometry
28A80 Fractals

Software:

GitHub

References:

[1] Witten, TA; Sander, LM, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., 47, 1400-1403, 1981 · doi:10.1103/PhysRevLett.47.1400
[2] Eden, M.: A two-dimensional growth process. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, pp. 223-239. University of California Press, Berkeley (1961) · Zbl 0104.13801
[3] Meakin, P.; Deutch, JM, The formation of surfaces by diffusion limited annihilation, J. Chem. Phys., 85, 4, 2320-2325, 1986 · doi:10.1063/1.451129
[4] Meakin, P., The Vold-Sutherland and Eden models of cluster formation, J. Colloid Interface Sci., 96, 2, 415-424, 1983 · doi:10.1016/0021-9797(83)90044-9
[5] Vicsek, T.: Fractal Growth Phenomena. World Scientific, Teaneck (1989). doi:10.1142/0511 · Zbl 0744.28005
[6] Stanley, HE; Ostrowsky, N., On Growth and Form. NATO Advanced Science Institutes Series E: Applied Sciences, 1986, Dordrecht: Martinus Nijhoff Publishers, Dordrecht · Zbl 0583.28003
[7] Jullien, R.; Botet, R., Aggregation and Fractal Aggregates, 1987, Teaneck: World Scientific, Teaneck · Zbl 0726.92030
[8] Kolb, M.; Kramer, B., Structure formation by aggregation: models and applications, Advances in Solid State Physics, 381-389, 2001, Berlin: Springer, Berlin · doi:10.1007/3-540-44946-9_31
[9] Barabási, A.-L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995). doi:10.1017/CBO9780511599798 · Zbl 0838.58023
[10] Hastings, MB; Levitov, LS, Laplacian growth as one-dimensional turbulence, Physica D, 116, 1, 244-252, 1998 · Zbl 0962.76542 · doi:10.1016/S0167-2789(97)00244-3
[11] Silvestri, V., Fluctuation results for Hastings-Levitov planar growth, Probab. Theory Related Fields, 167, 1-2, 417-460, 2017 · Zbl 1360.60074 · doi:10.1007/s00440-015-0688-7
[12] Berger, N.; Procaccia, EB; Turner, A., Growth of stationary Hastings-Levitov, Ann. Appl. Probab., 32, 5, 3331-3360, 2022 · Zbl 1500.60005 · doi:10.1214/21-AAP1761
[13] Kesten, H., How long are the arms in DLA?, J. Phys. A, 20, 1, 29-33, 1987 · doi:10.1088/0305-4470/20/1/007
[14] Kesten, H., Upper bounds for the growth rate of DLA, Physica A, 168, 1, 529-535, 1990 · doi:10.1016/0378-4371(90)90405-H
[15] Lawler, GF, Intersections of Random Walks. Probability and Its Applications, 1991, Boston: Birkhäuser, Boston · Zbl 1228.60004 · doi:10.1007/978-1-4612-0771-9
[16] Benjamini, I., Yadin, A.: Upper bounds on the growth rate of diffusion limited aggregation (2017). arXiv:1705.06095
[17] Lawler, GF; Bramson, M.; Griffeath, D., Internal diffusion limited aggregation, Ann. Probab., 20, 4, 2117-2140, 1992 · doi:10.1214/aop/1176989542
[18] Auffinger, A., Damron, M., Hanson, J.: 50 Years of First-Passage Percolation. University Lecture Series, vol. 68. American Mathematical Society, Providence (2017). doi:10.1090/ulect/068 · Zbl 1452.60002
[19] Sava-Huss, E.: From fractals in external DLA to internal DLA on fractals. In: Freiberg, U., Hambly, B., Hinz, M., Winter, S. (eds.) Fractal Geometry and Stochastics VI. Progress in Probability, vol. 76, pp. 273-298. Birkhäuser/Springer, Cham (2021). doi:10.1007/978-3-030-59649-1_12 · Zbl 1470.60206
[20] Molchanov, IS, Diffusion-limited aggregation with jumps and flights, J. Stat. Comput. Simul., 64, 4, 357-381, 1999 · Zbl 0969.60080 · doi:10.1080/00949659908811985
[21] Seppäläinen, T.: Strong law of large numbers for the interface in ballistic deposition. Ann. l’Inst. Henri Poincare B Probab. Stat. 36(6), 691-736 (2000). doi:10.1016/S0246-0203(00)00137-0 · Zbl 0972.60097
[22] Penrose, MD, Growth and roughness of the interface for ballistic deposition, J. Stat. Phys., 131, 2, 247-268, 2008 · Zbl 1143.82021 · doi:10.1007/s10955-008-9507-1
[23] Comets, F.; Dalmau, J.; Saglietti, S., Scaling limit of the heavy tailed ballistic deposition model with \(p\)-sticking, Ann. Probab., 51, 5, 1870-1931, 2023 · Zbl 07793394 · doi:10.1214/23-aop1635
[24] Bosch, T.: Incremental-aggregations. https://github.com/tillmanntristanbosch/incremental-aggregations (2021). Accessed 23rd August 2023
[25] Kesten, H.; Hennequin, PL, Aspects of first passage percolation, École d’Été de Probabilités de Saint Flour XIV - 1984, 125-264, 1986, Berlin: Springer, Berlin · Zbl 0602.60098 · doi:10.1007/BFb0074919
[26] Deuschel, J-D; Pisztora, A., Surface order large deviations for high-density percolation, Probab. Theory Relat. Fields, 104, 4, 467-482, 1996 · doi:10.1007/BF01198162
[27] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications (New York). Springer, Berlin (2008). doi:10.1007/978-3-540-78859-1 · Zbl 1175.60003
[28] Bensimon, D.; Shraiman, B.; Liang, S., On the ballistic model of aggregation, Phys. Lett. A, 102, 5, 238-240, 1984 · doi:10.1016/0375-9601(84)90701-1
[29] Ball, RC; Witten, TA, Causality bound on the density of aggregates, Phys. Rev. A, 29, 2966-2967, 1984 · doi:10.1103/PhysRevA.29.2966
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.