×

Growth of stationary Hastings-Levitov. (English) Zbl 1500.60005

Summary: We construct and study a stationary version of the Hastings-Levitov\((0)\) model. We prove that, unlike in the classical HL\((0)\) model, in the stationary case the size of particles attaching to the aggregate is tight, and therefore SHL\((0)\) is proposed as a potential candidate for a stationary off-lattice variant of diffusion limited aggregation (DLA). The stationary setting, together with a geometric interpretation of the harmonic measure, yields new geometric results such as stabilization, finiteness of arms and arm size distribution. We show that, under appropriate scaling, arms in SHL\((0)\) converge to the graph of Brownian motion which has fractal dimension \(3/2\). Moreover we show that trees with \(n\) particles reach a height of order \({n^{2/3}}\), corresponding to a numerical prediction of Meakin from 1983 for the gyration radius of DLA growing on a long line segment.

MSC:

60D05 Geometric probability and stochastic geometry
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] ANTUNOVIĆ, T. and PROCACCIA, E. B. (2017). Stationary Eden model on Cayley graphs. Ann. Appl. Probab. 27 517-549. · Zbl 1381.60117 · doi:10.1214/16-AAP1210
[2] BERGER, N., KAGAN, J. J. and PROCACCIA, E. B. (2014). Stretched IDLA. ALEA Lat. Am. J. Probab. Math. Stat. 11 471-481. · Zbl 1321.60201
[3] DAVIDOVITCH, B., HENTSCHEL, H. G. E., OLAMI, Z., PROCACCIA, I., SANDER, L. M. and SOMFAI, E. (1999). Diffusion limited aggregation and iterated conformal maps. Phys. Rev. E (3) 59 1368-1378. · doi:10.1103/PhysRevE.59.1368
[4] ELLIS, T. (2011). Coalescing Stochastic Flows Driven by Poisson Random Measure and Convergence to the Brownian Web Ph.D. thesis, Univ. Cambridge.
[5] Garnett, J. B. and Marshall, D. E. (2005). Harmonic Measure. New Mathematical Monographs 2. Cambridge Univ. Press, Cambridge. · Zbl 1077.31001 · doi:10.1017/CBO9780511546617
[6] HASTINGS, M. B. and LEVITOV, L. S. (1998). Laplacian growth as one-dimensional turbulence. Phys. D, Nonlinear Phenom. 116 244-252. · Zbl 0962.76542
[7] KAGAN, J. (2018). Ph.D. thesis.
[8] LÓPEZ, S. I. and PIMENTEL, L. P. R. (2017). Geodesic forests in last-passage percolation. Stochastic Process. Appl. 127 304-324. · Zbl 1375.60136 · doi:10.1016/j.spa.2016.06.009
[9] LOUCHARD, G. and JANSON, S. (2007). Tail estimates for the Brownian excursion area and other Brownian areas. Electron. J. Probab. 12 1600-1632. · Zbl 1189.60148 · doi:10.1214/EJP.v12-471
[10] MEAKIN, P. (1983). Diffusion-controlled deposition on fibers and surfaces. Phys. Rev. A 27 2616.
[11] MEAKIN, P. (1983). Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 51 1119.
[12] MU, Y., PROCACCIA, E. B. and ZHANG, Y. (2019). Scaling limit of DLA on a long line segment. arXiv preprint. Available at arXiv:1912.02370.
[13] NORRIS, J., SILVESTRI, V. and TURNER, A. (2019). Scaling limits for planar aggregation with subcritical fluctuations. arXiv preprint. Available at arXiv:1902.01376.
[14] Norris, J. and Turner, A. (2012). Hastings-Levitov aggregation in the small-particle limit. Comm. Math. Phys. 316 809-841. · Zbl 1259.82026 · doi:10.1007/s00220-012-1552-6
[15] PROCACCIA, E. B. and PROCACCIA, I. (2021). Dimension of diffusion-limited aggregates grown on a line. Phys. Rev. E 103 L020101.
[16] PROCACCIA, E. B., YE, J. and ZHANG, Y. (2020). Stationary DLA is well defined. J. Stat. Phys. 181 1089-1111. · Zbl 1458.60105 · doi:10.1007/s10955-020-02619-8
[17] PROCACCIA, E. B., YE, J. and ZHANG, Y. (2021). Stationary harmonic measure as the scaling limit of truncated harmonic measure. ALEA Lat. Am. J. Probab. Math. Stat. 18 1529-1560. · Zbl 1468.60124 · doi:10.30757/ALEA.v18-56
[18] Procaccia, E. B. and Zhang, Y. (2019). Stationary harmonic measure and DLA in the upper half plane. J. Stat. Phys. 176 946-980. · Zbl 1499.82016 · doi:10.1007/s10955-019-02327-y
[19] PROCACCIA, E.B. and ZHANG, Y. (2021). On sets of zero stationary harmonic measure. Stochastic Process. Appl. 131 236-252. · doi:10.1016/j.spa.2020.09.007
[20] RÁCZ, Z. and VICSEK, T. (1983). Diffusion-controlled deposition: Cluster statistics and scaling. Phys. Rev. Lett. 51 2382.
[21] Rohde, S. and Zinsmeister, M. (2005). Some remarks on Laplacian growth. Topology Appl. 152 26-43. · Zbl 1077.60040 · doi:10.1016/j.topol.2004.08.013
[22] SILVESTRI, V. (2017). Fluctuation results for Hastings-Levitov planar growth. Probab. Theory Related Fields 167 417-460. · Zbl 1360.60074 · doi:10.1007/s00440-015-0688-7
[23] VICSEK, T. (1984). Pattern formation in diffusion-limited aggregation. Phys. Rev. Lett. 53 2281.
[24] VOSS, R. F. and TOMKIEWICZ, M. (1985). Computer simulation of dendritic electrodeposition. J. Electrochem. Soc. 132 371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.