×

Power-series solutions of fractional-order compartmental models. (English) Zbl 07830983

Summary: Compartmental models based on coupled differential equations of fractional order have been widely employed in the literature for modeling. An abstraction of these models is given by a system with polynomial vector field. We investigate the use of power series for solving generic polynomial differential equations in any dimension, with Caputo fractional derivative. As is well known, power series convert a continuous formulation into a discrete system of difference equations, which are easily solved by recursion. The novelty of this paper is that we rigorously prove that the series converge on a neighborhood of the initial instant, which is an analogue of the Cauchy-Kovalevskaya theorem. Besides, these series are proved to be continuous with respect to the fractional index. For applications, a general-purpose symbolic implementation of truncated power series is developed, and its execution is illustrated for the fractional SIR epidemiological model.

MSC:

34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
34A08 Fractional ordinary differential equations
68W30 Symbolic computation and algebraic computation
92D30 Epidemiology
39A12 Discrete version of topics in analysis

Software:

Mathematica

References:

[1] Acedo, L.; Díez-Domingo, J.; Moraño, JA; Villanueva, RJ, Mathematical modelling of respiratory syncytial virus (RSV): vaccination strategies and budget applications, Epidemiol Infect, 138, 6, 853-860 (2010) · doi:10.1017/S0950268809991373
[2] Acedo, L.; González-Parra, G.; Arenas, AJ, An exact global solution for the classical SIRS epidemic model, Nonlinear Anal Real World Appl, 11, 3, 1819-1825 (2010) · Zbl 1196.34058 · doi:10.1016/j.nonrwa.2009.04.007
[3] Alshomrani, AS; Ullah, MZ; Baleanu, D., Caputo SIR model for COVID-19 under optimized fractional order, Adv Differ Equ, 1, 185 (2021) · Zbl 1494.92121 · doi:10.1186/s13662-021-03345-5
[4] Area, I.; Nieto, JJ, Power series solution of the fractional logistic equation, Phys A, 573, 125947 (2021) · Zbl 1527.82013 · doi:10.1016/j.physa.2021.125947
[5] Area, I.; Nieto, JJ, On the fractional Allee logistic equation in the Caputo sense, Ex Counterex, 4, 100121 (2023) · doi:10.1016/j.exco.2023.100121
[6] Area, I.; Batarfi, H.; Losada, J.; Nieto, JJ; Shammakh, W.; Torres, Á., On a fractional order Ebola epidemic model, Adv Differ Equ, 1, 1-12 (2015) · Zbl 1344.92150
[7] Biala, TA; Khaliq, AQM, A fractional-order compartmental model for the spread of the COVID-19 pandemic, Commun Nonlinear Sci Numer Simul, 98, 105764 (2021) · Zbl 1468.34061 · doi:10.1016/j.cnsns.2021.105764
[8] Blanchower, DG; Oswald, AJ; Landeghem, BV, Imitative obesity and relative utility, J Eur Econ Assoc, 7, 528-538 (2009) · doi:10.1162/JEEA.2009.7.2-3.528
[9] Brauer, F.; van den Driessche, P.; Wu, J., Mathematical epidemiology, 19-79 (2008), Berlin: Springer, Berlin · Zbl 1159.92034
[10] Calatayud, J.; Jornet, M., Mathematical modeling of adulthood obesity epidemic in Spain using deterministic, frequentist and Bayesian approaches, Chaos Soliton Fract, 140, 110179 (2020) · doi:10.1016/j.chaos.2020.110179
[11] Calatayud Gregori, J.; Cortés, JC; Jornet Sanz, M., Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties, Stoch Anal Appl, 38, 5, 875-885 (2020) · Zbl 1466.34056 · doi:10.1080/07362994.2020.1733017
[12] Caputo, M., Linear model of dissipation whose Q is almost frequency independent-II, Geophys. J R Astron Soc, 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[13] Carvalho, AR; Pinto, C.; Baleanu, D., HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load, Adv Differ Equ, 1, 1-22 (2018) · Zbl 1445.92266
[14] Carvalho AR, Pinto CM, de Carvalho JM (2020) Fractional model for type 1 diabetes. Math Model Optim Eng Probl 175-185 · Zbl 1460.92048
[15] Cervello, R.; Cortés, JC; Santonja, FJ; Villanueva, RJ, The dynamics over the next few years of the Spanish mobile telecommunications market share: a mathematical modelling approach, Math Comput Model Dyn, 20, 6, 557-565 (2014) · doi:10.1080/13873954.2013.843572
[16] Cooper, I.; Mondal, A.; Antonopoulos, CG, A SIR model assumption for the spread of COVID-19 in different communities, Chaos Solitons Fractals, 139, 110057 (2020) · doi:10.1016/j.chaos.2020.110057
[17] De Oliveira, EC; Tenreiro Machado, JA, A review of definitions for fractional derivatives and integral, Math Probl Eng, 2014, 238459 (2014) · Zbl 1407.26013 · doi:10.1155/2014/238459
[18] Dunkl C, Xu Y (2014) Orthogonal polynomials of several variables. Encyclopedia of Mathematics and its Applications, 2nd edn, vol 155, Cambridge University Press, Cambridge · Zbl 1317.33001
[19] Esiri, MO, The influence of peer pressure on criminal behaviour, J Humanit Soc Sci, 21, 1, 08-14 (2016)
[20] Gerasimov, AN, A generalization of linear laws of deformation and its application to problems of internal friction, Akad Nauk SSSR Prikladnaya Matematika i Mekhanika, 12, 251-259 (1948)
[21] Gómez-Aguilar, JF; Razo-Hernández, R.; Granados-Lieberman, D., A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response, Rev Mex Fís, 60, 32-38 (2014)
[22] Harkins, SG; Williams, KD; Burger, J., The Oxford handbook of social influence (2017), Oxford: Oxford University Press, Oxford · Zbl 1364.00021
[23] Harko, T.; Lobo, FSN; Mak, MK, Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Appl Math Comput, 236, 184-194 (2014) · Zbl 1334.92400
[24] Heng, K.; Althaus, CL, The approximately universal shapes of epidemic curves in the Susceptible-Exposed-Infectious-Recovered (SEIR) model, Sci Rep, 10, 19365 (2020) · doi:10.1038/s41598-020-76563-8
[25] Himonas, AA; Petronilho, G., Analyticity in partial differential equations, Complex Anal Synerg, 6, 15, 1-16 (2020) · Zbl 1465.35353
[26] Jornet, M., Beyond the hypothesis of boundedness for the random coefficient of the Legendre differential equation with uncertainties, Appl Math Comput, 391, 125638 (2021) · Zbl 1474.34396
[27] Jornet M (2023) On the convergence of the power-series method for the fractional Allee logistic equation. Submitted
[28] Kaup, L.; Kaup, B., Holomorphic functions of several variables: an introduction to the fundamental theory (2011), Berlin: Walter de Gruyter, Berlin
[29] Kermack, WO; McKendrick, AG, Contribution to the mathematical theory of epidemics, Proc R Soc Lond A, 115, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[30] Kershaw, D., Some extensions of W Gautschi’s inequalities for the Gamma function, Math Comput, 41, 607-611 (1983) · Zbl 0536.33002
[31] Koekoek, R.; Lesky, PA; Swarttouw, RF, Hypergeometric orthogonal polynomials and their q-analogues (2010), Berlin: Springer, Berlin · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[32] Lotfi, M.; Hamblin, MR; Rezaei, N., COVID-19: Transmission, prevention, and potential therapeutic opportunities, Clin Chim Acta, 508, 254-266 (2020) · doi:10.1016/j.cca.2020.05.044
[33] Martinez, VM; Barbosa, AN; Mancera, PFA; Rodrigues, DS; Camargo, RF, A fractional calculus model for HIV dynamics: real data, parameter estimation and computational strategies, Chaos Solitons Fractals, 152, 111398 (2021) · Zbl 1498.92062 · doi:10.1016/j.chaos.2021.111398
[34] Masenga, SK; Mweene, BC; Luwaya, E.; Muchaili, L.; Chona, M.; Kirabo, A., HIV-host cell interactions, Cells, 12, 10, 1351 (2023) · doi:10.3390/cells12101351
[35] Ndaïrou, F.; Area, I.; Nieto, JJ; Silva, CJ; Torres, DF, Fractional model of COVID-19 applied to Galicia, Spain and Portugal. Chaos Solitons Fractals, 144, 110652 (2021) · doi:10.1016/j.chaos.2021.110652
[36] Ortigueira, MD; Machado, JT, What is a fractional derivative?, J Comput Phys, 293, 4-13 (2015) · Zbl 1349.26016 · doi:10.1016/j.jcp.2014.07.019
[37] Pinto, CM; Carvalho, AR, A latency fractional order model for HIV dynamics, J Comput Appl Math, 312, 240-256 (2017) · Zbl 1352.34076 · doi:10.1016/j.cam.2016.05.019
[38] Popović, JK; Atanacković, MT; Pilipović, AS; Rapaić, MR; Pilipović, S.; Atanacković, TM, A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac, J Pharmacokinet Pharmacodyn, 37, 119-134 (2010) · doi:10.1007/s10928-009-9147-3
[39] Rudin W (1976) Principles of mathematical analysis, 3rd edn, International Series in Pure & Applied Mathematics · Zbl 0346.26002
[40] Sánchez, E.; Villanueva, RJ; Santonja, FJ; Rubio, M., Predicting cocaine consumption in Spain: a mathematical modelling approach, Drug-Educ Prev Polic, 18, 2, 108-115 (2011) · doi:10.3109/09687630903443299
[41] Santonja, FJ; Sánchez, E.; Rubio, M.; Morera, JL, Alcohol consumption in Spain and its economic cost: a mathematical modeling approach, Math Comput Model., 52, 7-8, 999-1003 (2010) · Zbl 1205.91124 · doi:10.1016/j.mcm.2010.02.029
[42] Srivastava, HM; Area Carracedo, IC; Nieto, JJ, Power-series solution of compartmental epidemiological models, Math Biosci Eng, 18, 4, 3274-3290 (2021) · Zbl 1471.92352 · doi:10.3934/mbe.2021163
[43] Teschl, G., Ordinary differential equations and dynamical systems (2012), Providence: American Mathematical Society, Providence · Zbl 1263.34002 · doi:10.1090/gsm/140
[44] Villafuerte, L., Solution processes for second-order linear fractional differential equations with random inhomogeneous parts, Math Comput Simul, 210, 17-48 (2023) · Zbl 1540.60127 · doi:10.1016/j.matcom.2023.03.001
[45] Wolfram Research, Inc. (2020) Mathematica, Version 12.1, Champaign
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.