×

Singular modifications of a classical function. (English) Zbl 07829366

Summary: The present article deals with properties of one class of functions with complicated local structure. These functions can be modeled by certain operators of digits. Such operators were considered by the author earlier. This research is a generalization of investigations presented in the last-mentioned papers.

MSC:

11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
11J72 Irrationality; linear independence over a field
26A27 Nondifferentiability (nondifferentiable functions, points of nondifferentiability), discontinuous derivatives
11B34 Representation functions
39B22 Functional equations for real functions
39B72 Systems of functional equations and inequalities
26A30 Singular functions, Cantor functions, functions with other special properties
11B34 Representation functions

References:

[1] E. de Amo, M. Díaz Carrillo, and J. Fernández-Sánchez, On duality of aggregation operators and k-negations, Fuzzy Sets Systems, 181 (2011), 14-27. · Zbl 1239.39016
[2] E. de Amo, M. Díaz Carrillo, and J. Fernández-S’anchez, A Salem generalized function, Acta Math. Hungar., 151 (2017), 361-378. · Zbl 1399.26008
[3] L. Berg and M. Kruppel, De Rham’s singular function and related functions, Z. Anal. Anwend., 19 (2000), 227-237. · Zbl 0985.39020
[4] K. A. Bush, Continuous functions without derivatives, Amer. Math. Monthly, 59 (1952), 222-225. · Zbl 0046.28705
[5] A. Bunde and S. Havlin, Fractals in Science, Springer-Verlag (Berlin, 1994). · Zbl 0796.00013
[6] G. Cantor, Über die einfachen Zahlensysteme, Z. Math. Phys., 14 (1869), 121-128. · JFM 02.0085.01
[7] K. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Ltd. (Chichester, 1997). · Zbl 0869.28003
[8] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley (2004).
[9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press (Oxford, 1979). · Zbl 0423.10001
[10] S. Ito and T. Sadahiro, Beta-expansions with negative bases, Integers, 9 (2009), 239- 259. · Zbl 1191.11005
[11] K. Kawamura, The derivative of Lebesgue’s singular function, Real Anal. Exchange, Summer Symposium 2010, 83-85.
[12] M. Krüppel, De Rham’s singular function, its partial derivatives with respect to the parameter and binary digital sums, Rostock. Math. Kolloq., 64 (2009), 57-74. · Zbl 1202.11007
[13] B. Mandelbrot, Fractals: Form, Chance and Dimension, W.H. Freeman and Co. (San Francisco, Calif., 1977). · Zbl 0376.28020
[14] B. Mandelbrot, The Fractal Geometry of Nature, 18th printing, Freeman (New York, 1999).
[15] P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc., 42 (1946), 15-23. · Zbl 0063.04088
[16] H. Minkowski, Zur Geometrie der Zahlen, in: Gesammeine Abhandlungen, Band 2, H. Minkowski, ed., B. G. Teubner (Leipzig, Berlin, 1911), pp. 50-51,
[17] T. Okada, T. Sekiguchi, and Y. Shiota, An explicit formula of the exponential sums of digital sums, Japan J. Indust. Appl. Math., 12 (1995), 425-438. · Zbl 0844.11007
[18] J. Paradís, P. Viader, and Ll. Bibiloni, A new singular function, Amer. Math. Monthly, 118 (2011), 344-354. · Zbl 1231.26005
[19] A. Rényi, Representations for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hungar., 8 (1957), 477-493. · Zbl 0079.08901
[20] R. Salem, On some singular monotonic functions which are stricly increasing, Trans. Amer. Math. Soc., 53 (1943), 423-439. · Zbl 0060.13709
[21] S. O. Serbenyuk, On one nearly everywhere continuous and nowhere differentiable function defined by automaton with finite memory, in: International Scientific Conference “Asymptotic Methods in the Theory of Differential Equations”, dedicated to 80th anniversary of M. I. Shkil, Abstracts, National Pedagogical Dragomanov University (Kyiv, 2012), p. 93 (in Ukrainian).
[22] S. O. Serbenyuk, On one nearly everywhere continuous and nowhere differentiable function, that defined by automaton with finite memory, Naukovyi Chasopys NPU im. M. P. Dragomanova, Ser. 1, Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ., Ser. 1, Phys. Math.], 13 (2012) (in Ukrainian).
[23] S. O. Serbenyuk, On one generalization of functions defined by automatons with finite memory, in: Third Interuniversity Scientific Conference of Young Scientists on Mathematics and Physics, Abstracts, National University of Kyiv-Mohyla Academy (Kyiv, 2013), pp. 112-113 (in Ukrainian).
[24] S. Serbenyuk, On two functions with complicated local structure, in: Fifth International Conference on Analytic Number Theory and Spatial Tessellations, Abstracts, Institute of Mathematics of the National Academy of Sciences of Ukraine and Institute of Physics and Mathematics of the National Pedagogical Dragomanov University (Kyiv, 2013), pp. 51-52.
[25] S. O. Serbenyuk, Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA, 165 (2015), 34-40 (in Ukrainian).
[26] S. O. Serbenyuk, Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers, J. Math. Phys. Anal. Geom. (Zh. Mat. Fiz. Anal. Geom.), 13 (2017), 57-81. · Zbl 1370.26015
[27] S. Serbenyuk, On one class of functions with complicated local structure, ?Siauliai Math. Seminar, 11 (2016), 75-88. · Zbl 1382.26002
[28] S. Serbenyuk, On one fractal property of the Minkowski function, Revista de la Real Academia de Ciencias Exactas, F’isicas y Naturales. Serie A. Matem’aticas, 112 (2018), no. 2, 555-559, doi:10.1007/s13398-017-0396-5 · Zbl 1387.28013
[29] S. O. Serbenyuk, Non-Differentiable functions defined in terms of classical representations of real numbers, Journal of Mathematical Physics, Analysis, Geometry (Zh. Mat. Fiz. Anal. Geom.), 14 (2018), no. 2, 197-213. doi:10.15407/mag14.02.197 · Zbl 1447.26003
[30] S. Serbenyuk On some generalizations of real numbers representations, arXiv:1602.07929v1 (in Ukrainian)
[31] S. Serbenyuk, Generalizations of certain representations of real numbers, Tatra Mountains Math. Publ., 77 (2020), 59-72. · Zbl 1484.11165
[32] S. Serbenyuk, On one application of infinite systems of functional equations in function theory, Tatra Mountains Math. Publ., 74 (2019), 117-144. · Zbl 1498.39030
[33] S. Serbenyuk, Generalized shift operator of certain encodings of real numbers, arXiv:1909.03163 (2019).
[34] S. Serbenyuk, On certain functions and related problems, arXiv:1911.12140v1 (2019).
[35] S. Serbenyuk, Systems of functional equations and generalizations of certain functions, Aequationes Math., 95 (2021), 801-820. · Zbl 1481.11079
[36] S. Serbenyuk, Functional equations, alternating expansions, and generalizations of the Salem functions, Aequationes Math. (2023), doi:10.1007/s00010-023-00992-9.
[37] S. Serbenyuk, Certain functions defined in terms of Cantor series, J. Math. Phys. Anal. Geom. (Zh. Mat. Fiz. Anal. Geom.), 16 (2020), 174-189. · Zbl 1460.26005
[38] S. Serbenyuk, On certain maps defined by infinite sums, J. Anal., 28 (2020), 987- 1007. · Zbl 1460.26004
[39] S. Serbenyuk, A certain modification of classical singular function, Bol. Soc. Mat. Mexicana, 29 (2023), Article Number 88. · Zbl 07785678
[40] S. Serbenyuk, Some fractal properties of sets having the Moran structure, Tatra Mt. Math. Publ., 81 2022, 1-38. · Zbl 1527.28011
[41] S. Serbenyuk, Certain singular distributions and fractals, Tatra Mt. Math. Publ., 79 (2021), 163-198. · Zbl 1492.28010
[42] S. O. Serbenyuk, One distribution function on the Moran sets, Azerb. J. Math., 10 (2020), 12-30. · Zbl 1464.11079
[43] S. Serbenyuk, Some types of numeral systems and their modeling, J. Anal., 31 (2023), 149-177. · Zbl 1521.11050
[44] H. Takayasu, Physical models of fractal functions, Japan J. Appl. Math., 1 (1984), 201-205. · Zbl 0604.26005
[45] S. Tasaki, I. Antoniou, and Z. Suchanecki, Deterministic diffusion, de Rham equation and fractal eigenvectors, Phys. Lett. A, 179 (1993), 97-102.
[46] T. Zamfirescu, Most monotone functions are singular, Amer. Math. Monthly, 88 (1981), 47-49. · Zbl 0462.26004
[47] Pathological (mathematics), Wikipedia, the free encyclopedia, available at https://en.wikipedia.org/wiki/Pathological (mathematics).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.