×

On the duality of aggregation operators and \(k\)-negations. (English) Zbl 1239.39016

The article deals with a class of duality functions given by the solution of a system of functional equations related to the generalized De Rham system \[ f(kx) = k' + (1 - k')f(x), \qquad f(k + (1 - k)x) = k'f(x); \] here is \(k\) and \(k'\) are constant, and \(x \in [0,1]\). It is proved that the only bounded solution \(N_{k,k'}\) of this system is strictly decreasing and continuous; moreover, if \(k + k' \neq 1\) then there exists a set of measure \(1\) in which the derivative of \(N_{k,k'}\) vanishes (and \(N_{k,k'}\) does not admit a non-zero derivative at any \(x \in [0,1]\)). The functions \(N_{k,k'}\) and \(N_{k',k}\) are inverse to each other. At last, \(N_{k,k'}\) applies a set of Lebesgue measure \(1\) onto a set of Lebesgue measure \(0\) whose Hausdorff dimension is \(\ln [k^k(1 - k)^{1-k}] / [\ln [{k'}^{1-k}(1 - k')^k]\). In the end of the article, similar results are obtained for the function \(N_k\) that is the unique bounded solution of the system \[ f(kx) = k + (1 - k)f(x), \qquad f(k + (1 - k)x) = kf(x) \] (really, this system is a partial case of the previous system when \(k + k' = 1\)). The basic role in the authors’ argument plays the dyadic representation of numbers from \((0,1]\) of the type \(x = \sum_{d=0}^\infty (1 - k)^d k^{m_d}\) (\(1 \leq m_0 \leq m_1 \leq \dots \leq m_d \leq \dots\)). In particular, this dyadic representation allows the authors to obtain an explicit expressions for the functions \(N_{k,k'}\) and \(N_k\).

MSC:

39B22 Functional equations for real functions
26A30 Singular functions, Cantor functions, functions with other special properties
Full Text: DOI

References:

[1] Alsina, C.; Frank, M. J.; Schweizer, B., Associative Functions: Triangular Norms and Copulas (2006), World Scientific: World Scientific Singapur · Zbl 1100.39023
[2] de Amo, E.; Fernández-Sánchez, J., A generalised dyadic representation system, Int. J. Pure Appl. Math., 52, 1, 49-66 (2009) · Zbl 1179.26092
[3] Berg, L.; Krüppel, M., De Rham’s singular function and related functions, Z. Anal. Anwend., 19, 1, 227-237 (2000) · Zbl 0985.39020
[4] Bernstein, B.; Erber, T.; Karamolengos, M., Sneaky plasticity and mesoscopic fractals, Chaos Solitons Fractals, 3, 269-277 (1993) · Zbl 0772.73031
[5] T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators. New Trends and Applications, Physica-Verlag, Heidelberg, 2002.; T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators. New Trends and Applications, Physica-Verlag, Heidelberg, 2002. · Zbl 0983.00020
[6] De Rham, G., Sur quelques courbes definies par des equations fonctionnelles, Rend. Semin. Mat. Univ. Politec. Torino, 16, 101-113 (1956) · Zbl 0079.16105
[7] Falconer, K. J., Fractal Geometry. Mathematical Foundations and Applications (2003), John Wiley · Zbl 1060.28005
[8] Fraile, A.; Mayor, G.; Monserrat, M., \(k\)-Negacions, Actes del IV Congrés Català de Lògica (1985), Barcelona, pp. 67-68
[9] Hájek, P., Mathematical of Fuzzy Logic (1998), Kluwer: Kluwer Dordrecht · Zbl 0937.03030
[10] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer: Kluwer Dordrecht · Zbl 0972.03002
[11] Maes, K. C.; De Baets, B., Negation and affirmation: the role of involutive negators, Soft Comput., 11, 647-654 (2007) · Zbl 1119.03056
[12] Maes, K. C.; De Baets, B., Orthosymmetrical monotone functions, Bull. Belg. Math. Soc. Simon Stevin, 14, 99-116 (2007) · Zbl 1142.26007
[13] Maes, K. C.; De Baets, B., Commutativity and self-duality: two tales of one equation, Int. J. Approx. Reasoning, 50, 189-199 (2009) · Zbl 1190.39011
[14] Maes, K. C.; De Baets, B., Divisible, reciprocal automorphisms of the unit interval, Int. J. Uncertainty Fuzziness Knowledge-Based Syst., 17, 221-235 (2009) · Zbl 1162.39306
[15] Maes, K. C.; Saminger, S.; De Baets, B., Representation and construction of self-dual aggregation operators, Eur. J. Oper. Res., 177, 472-487 (2007) · Zbl 1111.90071
[16] Mayor, G., On a family of quasi-arithmetic means, Aequationes Math., 35, 97-98 (1988)
[17] Mayor, G.; Calvo, T., Fractal negations, Mathware Soft Comput., 3, 277-283 (1994) · Zbl 0834.26007
[18] Mayor, G.; Torrens, J., Duality for a class of binary operations on [0,1], Fuzzy Sets Syst., 47, 77-80 (1992) · Zbl 0757.39006
[19] Mayor, G.; Torrens, J., De Rham systems and the solution of a class of functional equations, Aequationes Math., 47, 43-49 (1994) · Zbl 0802.39008
[20] Nelsen, R. B., An Introduction to Copulas (2006), Springer: Springer New York · Zbl 1152.62030
[21] Paradís, J.; Viader, P.; Bibiloni, L., Riesz-Nágy singular functions revisited, J. Math. Anal. Appl., 329, 592-602 (2007) · Zbl 1115.26001
[22] Riesz, F.; Sz-Nagy, B., Leçons d’Analyse Fonctionnelle (1968), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0122.11205
[23] Salem, R., On singular monotone functions, Trans. Am. Math. Soc., 53, 427-439 (1943) · Zbl 0060.13709
[24] Takacs, L., An increasing continuous singular function, Am. Math. Mon., 85, 35-37 (1978) · Zbl 0394.26005
[25] Trillas, E., Sobre funciones de negación en la teoría de conjuntos difusos, Stochastica, III, 1, 47-59 (1979) · Zbl 0419.03035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.