×

The covariance metric in the Blaschke locus. (English) Zbl 07827607

For a closed connected and oriented topological surface \(S\) of genus greater than one, let \(\mathcal{M}^B\) denote the space of Blaschke metrics on \(S\) and let \(\mathcal{M}_{-1}\) denote the space of smooth hyperbolic metrics on \(S\). A hyperbolic metric is a special case of a Blaschke metric on the surface. Considering the well-defined quotients of these spaces by the space \(\mathcal{D}_0\) of diffeomorphisms isotopic to the identity, the Teichmüller space \(\mathcal{T}(S)=\mathcal{M}_{-1}/\mathcal{D}_0\) can be viewed as a subset of the Blaschke locus \(\mathcal{M}^B/\mathcal{D}_0\). In this article, the Blaschke locus is the main object of study.
The first main result of the paper pertains to proving that the Blaschke locus is contractible and it is a smooth manifold of dimension \(16\mathcal{G}-17\) away from \(\mathcal{T}(S)\), where \(\mathcal{G}\) denotes the genus of \(S\). The proof uses techniques from affine differential geometry and Riemannian geometry, in particular, the regularity locus of the Blaschke locus is studied. The major tools implemented to obtain the results involve the construction of smooth charts of the Teichmüller space as demonstrated by A. J. Tromba [Teichmüller theory in Riemannian geometry: based on lecture notes by Jochen Denzler. Basel etc.: Birkhäuser Verlag (1992; Zbl 0785.53001)] and Wang’s equation from C. Wang [Lect. Notes Math. 1481, 271–280 (1991; Zbl 0743.53004)]. The latter refers to the second order partial differential equation \[ K(g)=-1+2 \vert q \vert ^2_g , \] where \(K(g)\) denotes the Gaussian curvature of a Blaschke metric \(g\), and \(\vert q \vert ^2_g =\frac{\vert q \vert ^2}{g^3}\) the pointwise \(g\)-norm of a holomorphic cubic differential \(q\). This equation provides a fundamental link between local slices for the bundle of holomorphic cubic differentials and local slices for the space of Blaschke metrics, thus allowing to produce smooth diffeomorphisms between these slices.
Yet, Wang’s equation can be viewed as a special case of Hitchin’s equation for the structure group \(\mathrm{PGL}(3, \mathbb{R})\), denoted here by \(\mathcal{H}_3(S)\). This allows one to view the Blaschke locus \(\mathcal{M}^B/\mathcal{D}_0\) as mapping class group equivariant homeomorphic to the quotient \(\mathcal{H}_3(S)/S^1\), for an \(S^1\)-action on \(\mathcal{H}_3(S)\). Thus, in the second part of the article, the authors treat the Riemannian geometry of the Blaschke locus with respect to the covariance metric by {C. Guillarmou} et al. [Ergodic Theory Dyn. Syst. 42, No. 3, 974–1022 (2022; Zbl 1493.37036)] called the pressure metric in [loc. cit.] Important results are obtained regarding the lengths of the covariant metric geodesics in the Blaschke locus.
The article is really well-written and demonstrates a wide collection of ideas and techniques from Riemannian and affine differential geometry.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C20 Global Riemannian geometry, including pinching
53A15 Affine differential geometry
58J05 Elliptic equations on manifolds, general theory

References:

[1] Ahlfors, L.V.: The complex analytic structure of the space of closed Riemann surfaces. In: Analytic Functions, pp. 45-66. Princeton University Press, Princeton, NJ (1960) · Zbl 0100.28903
[2] Ahlfors, LV, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. Math., 2, 74, 171-191, 1961 · Zbl 0146.30602 · doi:10.2307/1970309
[3] Ahlfors, L.V.: Curvature properties of Teichmüller’s space. J. Anal. Math. 9, 161-176 (1961/62) · Zbl 0148.31201
[4] Alessandrini, D.; Lee, G-S; Schaffhauser, F., Hitchin components for orbifolds, J. Eur. Math. Soc., 25, 4, 1285-347, 2022 · Zbl 1533.57047 · doi:10.4171/jems/1210
[5] Baraglia, D.: G2 geometry and integrable systems. PhD thesis, Oxford University, UK (2009)
[6] Bers, L., Holomorphic differentials as functions of moduli, Bull. Am. Math. Soc., 67, 206-210, 1961 · Zbl 0102.06702 · doi:10.1090/S0002-9904-1961-10569-7
[7] Bowen, R.; Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math., 29, 3, 181-202, 1975 · Zbl 0311.58010 · doi:10.1007/BF01389848
[8] Bridgeman, MJ; Taylor, EC, An extension of the Weil-Petersson metric to quasi-Fuchsian space, Math. Ann., 341, 4, 927-943, 2008 · Zbl 1176.30095 · doi:10.1007/s00208-008-0218-3
[9] Chu, T., The Weil-Petersson metric in the moduli space, Chin. J. Math., 4, 2, 29-51, 1976 · Zbl 0344.32006
[10] Contreras, G., Regularity of topological and metric entropy of hyperbolic flows, Math. Z., 210, 1, 97-111, 1992 · Zbl 0735.58026 · doi:10.1007/BF02571785
[11] Corro, D., Kordaß, J.-B.: Short survey on the existence of slices for the space of Riemannian metrics. In: Mexican Mathematicians in the World-Trends and Recent Contributions, Vol. 775, Contemp. Math, pp. 65-84. American Mathematical Society, Providence, RI (2021) · Zbl 1496.58002
[12] Croke, CB; Sharafutdinov, VA, Spectral rigidity of a compact negatively curved manifold, Topology, 37, 6, 1265-1273, 1998 · Zbl 0936.58013 · doi:10.1016/S0040-9383(97)00086-4
[13] Dai, S.; Li, Q., On cyclic Higgs bundles, Math. Ann., 376, 3-4, 1225-1260, 2020 · Zbl 1448.14030 · doi:10.1007/s00208-018-1779-4
[14] Dai, X., Geodesic coordinates for the pressure metric at the Fuchsian locus, Geom. Topol., 27, 4, 1391-1478, 2023 · Zbl 1522.53023 · doi:10.2140/gt.2023.27.1391
[15] Dumas, D.; Wolf, M., Polynomial cubic differentials and convex polygons in the projective plane, Geom. Funct. Anal., 25, 6, 1734-1798, 2015 · Zbl 1335.30013 · doi:10.1007/s00039-015-0344-5
[16] Ebin, DG, On the space of Riemannian metrics, Bull. Am. Math. Soc., 74, 1001-1003, 1968 · Zbl 0172.22905 · doi:10.1090/S0002-9904-1968-12115-9
[17] Ebin, D.G.: The manifold of Riemannian metrics. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), pp. 11-40. American Mathematical Society, Providence, RI (1970) · Zbl 0205.53702
[18] Evans, LC, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2010, Providence, RI: American Mathematical Society, Providence, RI · Zbl 1194.35001
[19] Farb, B.; Margalit, D., A Primer on Mapping Class Groups, 2012, Princeton, NJ: Princeton University Press, Princeton, NJ
[20] Fischer, AE; Tromba, AJ, On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Math. Ann., 267, 3, 311-345, 1984 · Zbl 0518.32015 · doi:10.1007/BF01456093
[21] Frankel, T., On theorems of Hurwitz and Bochner, J. Math. Mech., 15, 373-377, 1966 · Zbl 0139.39103
[22] Goüezel, S.; Lefeuvre, T., Classical and microlocal analysis of the x-ray transform on Anosov manifolds, Anal. PDE, 14, 1, 301-322, 2021 · Zbl 1479.37028 · doi:10.2140/apde.2021.14.301
[23] Guillarmou, C., Invariant distributions and X-ray transform for Anosov flows, J. Differ. Geom., 105, 2, 177-208, 2017 · Zbl 1372.37059 · doi:10.4310/jdg/1486522813
[24] Guillarmou, C.; Knieper, G.; Lefeuvre, T., Geodesic stretch, pressure metric and marked length spectrum rigidity, Ergod. Theory Dyn. Syst., 43, 974-1022, 2021 · Zbl 1493.37036
[25] Guillarmou, C.; Lefeuvre, T., The marked length spectrum of Anosov manifolds, Ann. Math. (2), 190, 1, 321-344, 2019 · Zbl 1506.53054 · doi:10.4007/annals.2019.190.1.6
[26] Guillarmou, C.; Monard, F., Reconstruction formulas for X-ray transforms in negative curvature, Ann. Inst. Fourier (Grenoble), 67, 4, 1353-1392, 2017 · Zbl 1410.58007 · doi:10.5802/aif.3112
[27] Guillemin, V.; Kazhdan, D., Some inverse spectral results for negatively curved 2-manifolds, Topology, 19, 3, 301-312, 1980 · Zbl 0465.58027 · doi:10.1016/0040-9383(80)90015-4
[28] Hamilton, RS, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7, 1, 65-222, 1982 · Zbl 0499.58003 · doi:10.1090/S0273-0979-1982-15004-2
[29] Hitchin, NJ, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. (3), 55, 1, 59-126, 1987 · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[30] Hitchin, NJ, Lie groups and Teichmüller space, Topology, 31, 3, 449-473, 1992 · Zbl 0769.32008 · doi:10.1016/0040-9383(92)90044-I
[31] Kobayashi, S., Transformation Groups in Differential Geometry, 1995, Berlin: Springer, Berlin · Zbl 0829.53023
[32] Labourie, F.: Flat projective structures on surfaces and cubic holomorphic differentials. Pure Appl. Math. Q. 3(4, Special Issue: In honor of Grigory Margulis. Part 1):1057-1099 (2007) · Zbl 1158.32006
[33] Labourie, F.: Cross ratios, Anosov representations and the energy functional on Teichmüller space. Ann. Sci.Éc. Norm. Supér. (4), 41(3), 437-469 (2008)
[34] Labourie, F., Wentworth, R.: Variations along the Fuchsian locus. Ann. Sci.Éc. Norm. Supér. (4) 51(2), 487-547 (2018) · Zbl 1404.37036
[35] Lang, S., Fundamentals of Differential Geometry, Volume 191 of Graduate Texts in Mathematics, 2012, Berlin: Springer, Berlin
[36] Li, Q.: An introduction to Higgs bundles via harmonic maps. SIGMA Symmetry Integrability Geom. Methods Appl. 15:Paper No. 035, 30 (2019) · Zbl 1419.53064
[37] Liverani, C., On contact Anosov flows, Ann. Math. (2), 159, 3, 1275-1312, 2004 · Zbl 1067.37031 · doi:10.4007/annals.2004.159.1275
[38] Loftin, J.C.: Applications of affine differential geometry to RP(2) surfaces. ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)-Harvard University
[39] Loftin, JC, Affine spheres and convex RPn-manifolds, Am. J. Math., 123, 2, 255-274, 2001 · Zbl 0997.53010 · doi:10.1353/ajm.2001.0011
[40] Loftin, JC, Flat metrics, cubic differentials and limits of projective holonomies, Geom. Dedicata, 128, 97-106, 2007 · Zbl 1145.57014 · doi:10.1007/s10711-007-9184-2
[41] Loftin, J.C.: Survey on affine spheres. In Handbook of geometric analysis, No. 2. Volume 13, Adv. Lect. Math. (ALM), pp. 161-191. Int. Press, Somerville, MA (2010) · Zbl 1214.53013
[42] Masur, H.; Wolf, M., The Weil-Petersson isometry group, Geom. Dedicata, 93, 177-190, 2002 · Zbl 1014.32008 · doi:10.1023/A:1020300413472
[43] Mazzeo, R., Elliptic theory of differential edge operators. I, Commun. Partial Differ. Equ., 16, 10, 1615-1664, 1991 · Zbl 0745.58045 · doi:10.1080/03605309108820815
[44] McMullen, CT, Thermodynamics, dimension and the Weil-Petersson metric, Invent. Math., 173, 2, 365-425, 2008 · Zbl 1156.30035 · doi:10.1007/s00222-008-0121-2
[45] Nomizu, K., Sasaki, T.: Affine Differential Geometry, Volume 111 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1994). Geometry of affine immersions · Zbl 0834.53002
[46] Ouyang, C.; Tamburelli, A., Limits of Blaschke metrics, Duke Math. J., 170, 8, 1683-1722, 2021 · Zbl 1475.30102 · doi:10.1215/00127094-2021-0027
[47] Parry, W.; Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, 268, 1990 · Zbl 0726.58003
[48] Paternain, GP; Salo, M.; Uhlmann, G., Geometric Inverse Problems. With Emphasis on Two Dimensions, Volume 204 of Cambridge Studies in Advance Mathematics, 2023, Cambridge: Cambridge University Press, Cambridge · Zbl 1519.35005 · doi:10.1017/9781009039901
[49] Pollicott, M., Derivatives of topological entropy for Anosov and geodesic flows, J. Differ. Geom., 39, 3, 457-489, 1994 · Zbl 0805.58052 · doi:10.4310/jdg/1214455077
[50] Sagman, N., Smillie, P.: Unstable minimal surfaces in symmetric spaces of non-compact type. arXiv e-prints, arXiv:2208.04885 (2022)
[51] Schulze, B-W, Pseudo-differential Operators on Manifolds with Singularities, Volume 24 of Studies in Applied Mathematics, 1991, Amsterdam: North-Holland, Amsterdam · Zbl 0747.58003
[52] Shubin, M.; Andersson, S., Pseudodifferential Operators and Spectral Theory, 2001, Berlin: Springer, Berlin · Zbl 0980.35180 · doi:10.1007/978-3-642-56579-3
[53] Simpson, CT, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Am. Math. Soc., 1, 4, 867-918, 1988 · Zbl 0669.58008 · doi:10.1090/S0894-0347-1988-0944577-9
[54] Teichmüller, O., Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl., 1943, 4, 42, 1943 · Zbl 0060.23313
[55] Tholozan, N., Volume entropy of Hilbert metrics and length spectrum of Hitchin representations into PSL(3, R), Duke Math. J., 166, 7, 1377-1403, 2017 · Zbl 1375.53022 · doi:10.1215/00127094-00000010X
[56] Thurston, W. P.: Geometry and topology of three-manifolds
[57] Tromba, A.J.: Teichmüller Theory in Riemannian Geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1992). Lecture notes prepared by Jochen Denzler · Zbl 0785.53001
[58] Wang, C.P.: Some examples of complete hyperbolic affine 2-spheres in R3. In: Global differential Geometry and Global Analysis (Berlin, 1990). Volume 1481, Lecture Notes in Mathematics, pp. 271-280. Springer, Berlin (1991) · Zbl 0743.53004
[59] Wienhard, A.: An invitation to higher Teichmüller theory. In: Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. II. Invited lectures, pp. 1013-1039. World Science Publications, Hackensack (2018) · Zbl 1447.32023
[60] Wolf, M., The Teichmüller theory of harmonic maps, J. Differ. Geom., 29, 2, 449-479, 1989 · Zbl 0655.58009 · doi:10.4310/jdg/1214442885
[61] Wolpert, S., Noncompleteness of the Weil-Petersson metric for Teichmüller space, Pac. J. Math., 61, 2, 573-577, 1975 · Zbl 0327.32009 · doi:10.2140/pjm.1975.61.573
[62] Wolpert, SA, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math., 85, 1, 119-145, 1986 · Zbl 0595.32031 · doi:10.1007/BF01388794
[63] Wolpert, SA, Geodesic length functions and the Nielsen problem, J. Differ. Geom., 25, 2, 275-296, 1987 · Zbl 0616.53039 · doi:10.4310/jdg/1214440853
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.