×

Thermodynamics, dimension and the Weil-Petersson metric. (English) Zbl 1156.30035

The author considers 1-parameter families of compact Riemann surfaces of genus \(g>1\). He reconstructs the Petersson-Weil metric on the corresponding Teichmüller space from the Hausdorff dimension of limit sets associated to such a family. He, moreover, establishes parallel results in complex dynamics for proper holomorphic selfmaps of the unit disk of degree \(>1\), leading, among other things, to a definition of a natural hermitian metric on the moduli space of such maps.
Reviewer: Ingo Lieb (Bonn)

MSC:

30F60 Teichmüller theory for Riemann surfaces
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
37F30 Quasiconformal methods and Teichmüller theory, etc. (dynamical systems) (MSC2010)
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
Full Text: DOI

References:

[1] Abenda, S., Moussa, P., Osbaldestin, A.H.: Multifractal dimensions and thermodynamical description of nearly-circular Julia sets. Nonlinearity 12, 19–40 (1999) · Zbl 0917.58022 · doi:10.1088/0951-7715/12/1/003
[2] Bers, L.: Uniformization and moduli (1960). In: Selected Works of Lipman Bers, Part 1, pp. 299–308. Am. Math. Soc. (1998)
[3] Bonahon, F.: The geometry of Teichmüller space via geodesic currents. Invent. Math. 92, 139–162 (1988) · Zbl 0653.32022 · doi:10.1007/BF01393996
[4] Bowen, R., Series, C.: Markov maps associated with Fuchsian groups. Publ. Math., Inst. Hautes Étud. Sci. 50, 153–170 (1978) · Zbl 0439.30033 · doi:10.1007/BF02684772
[5] Bridgeman, M., Taylor, E.C.: Patterson–Sullivan measures and quasi-conformal deformations. Commun. Anal. Geom. 13, 561–589 (2005) · Zbl 1093.37018
[6] Bridgeman, M., Taylor, E.C.: An extension of the Weil–Petersson metric to the quasi-Fuchsian space. Math. Ann. (to appear) · Zbl 1176.30095
[7] Burger, M.: Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2. Int. Math. Res. Not. 7, 217–225 (1993) · Zbl 0829.57023 · doi:10.1155/S1073792893000236
[8] DeMarco, L.: Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. Math. Ann. 326, 43–73 (2003) · Zbl 1032.37029 · doi:10.1007/s00208-002-0404-7
[9] Denker, M., Philipp, W.: Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Theory Dyn. Syst. 4, 541–552 (1984) · Zbl 0554.60077 · doi:10.1017/S0143385700002637
[10] Eskin, A., McMullen, C.: Mixing, counting and equidistribution in Lie groups. Duke Math. J. 71, 181–209 (1993) · Zbl 0798.11025 · doi:10.1215/S0012-7094-93-07108-6
[11] Fornaess, J.E., Sibony, N.: Harmonic currents of finite energy and laminations. Geom. Funct. Anal. 15, 962–1003 (2005) · Zbl 1115.32020 · doi:10.1007/s00039-005-0531-x
[12] Gardiner, F.P., Sullivan, D.P.: Symmetric structures on a closed curve. Am. J. Math. 114, 683–736 (1992) · Zbl 0778.30045 · doi:10.2307/2374795
[13] Gardiner, F.P., Sullivan, D.P.: Lacunary series as quadratic differentials in conformal dynamics. In: The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions. Contemp. Math., vol. 169, pp. 307–330. Am. Math. Soc. (1994) · Zbl 0814.30027
[14] Garnett, L.: Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51, 285–311 (1983) · Zbl 0524.58026 · doi:10.1016/0022-1236(83)90015-0
[15] Knapp, A.W.: Representation Theory of Semisimple Groups. Princeton University Press (1986) · Zbl 0604.22001
[16] Lyubich, M., Minsky, Y.: Laminations in holomorphic dynamics. J. Differ. Geom. 47, 17–94 (1997) · Zbl 0910.58032
[17] Makarov, N.G.: On the distortion of boundary sets under conformal mappings. Proc. Lond. Math. Soc., III. Ser. 51, 369–384 (1985) · Zbl 0573.30029 · doi:10.1112/plms/s3-51.2.369
[18] Mañé, R.: The Hausdorff dimension of invariant probabilities of rational maps. In: Dynamical Systems, Valparaiso 1986. Lect. Notes Math., vol. 1331, pp. 86–117. Springer (1988)
[19] Manning, A.: The dimension of the maximal measure for a polynomial map. Ann. Math. 119, 425–430 (1984) · Zbl 0551.30021 · doi:10.2307/2007044
[20] Martin, N.F.G.: On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms. Bull. Lond. Math. Soc. 15, 343–348 (1983) · doi:10.1112/blms/15.4.343
[21] McMullen, C.: Automorphisms of rational maps. In: Holomorphic Functions and Moduli I, pp. 31–60. Springer (1988)
[22] McMullen, C.: Complex Dynamics and Renormalization. Ann. Math. Stud., vol. 135. Princeton University Press (1994) · Zbl 0807.30013
[23] McMullen, C.: Rational maps and Teichmüller space. In: Havin, V.P., Nikolskii, N. K. (eds.) Linear and Complex Analysis Problem Book. Lect. Notes Math., vol. 1574, pp. 430–433. Springer (1994)
[24] McMullen, C.: The classification of conformal dynamical systems. In: Current Developments in Mathematics, 1995, pp. 323–360. International Press (1995) · Zbl 0908.30028
[25] McMullen, C.: Renormalization and 3-Manifolds which Fiber over the Circle. Ann. Math. Stud., vol. 142. Princeton University Press (1996) · Zbl 0860.58002
[26] McMullen, C.: Complex earthquakes and Teichmüller theory. J. Am. Math. Soc. 11, 283–320 (1998) · Zbl 0890.30031 · doi:10.1090/S0894-0347-98-00259-8
[27] McMullen, C.: Hausdorff dimension and conformal dynamics III: Computation of dimension. Am. J. Math. 120, 691–721 (1998) · Zbl 0953.30026 · doi:10.1353/ajm.1998.0031
[28] Melbourne, I. Török, A.: Statistical limit theorems for suspension flows. Isr. J. Math. 144, 191–209 (2004) · Zbl 1252.37010 · doi:10.1007/BF02916712
[29] de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer (1993) · Zbl 0791.58003
[30] Milnor, J.: Pasting together Julia sets: a worked out example of mating. Exp. Math. 13, 55–92 (2004) · Zbl 1115.37051
[31] Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Astérisque, vol. 187–188 (1990) · Zbl 0726.58003
[32] Pollicott, M.: On the mixing of Axiom A attracting flows and a conjecture of Ruelle. Ergodic Theory Dyn. Syst. 19, 535–548 (1999) · Zbl 0942.37013 · doi:10.1017/S0143385799120911
[33] Pommerenke, C.: Boundary Behavior of Conformal Maps. Springer (1992) · Zbl 0762.30001
[34] Ruelle, D.: Thermodynamic Formalism: the Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison-Wesley (1978) · Zbl 0401.28016
[35] Ruelle, D.: Repellers for real analytic maps. Ergodic Theory Dyn. Syst. 2, 99–107 (1982) · Zbl 0506.58024 · doi:10.1017/S0143385700009603
[36] Ruelle, D.: Flots qui ne mélangent pas exponentiellement. C. R. Acad. Sci., Paris, Sér. I, Math. 296, 191–193 (1983) · Zbl 0531.58040
[37] Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proc. Sympos. Pure Math., Vol. VIII, pp. 1–15. Am. Math. Soc. (1965) · Zbl 0142.33903
[38] Sinai, Y.G.: The central limit theorem for geodesic flows on manifolds of constant negative curvature. Sov. Math. Dokl. 1, 983–987 (1960) · Zbl 0129.31103
[39] Sullivan, D.: Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups. Acta Math. 155, 243–260 (1985) · Zbl 0606.30044 · doi:10.1007/BF02392543
[40] Sullivan, D.: Quasiconformal homeomorphisms in dynamics, topology and geometry. In: Proceedings of the International Conference of Mathematicians, pp. 1216–1228. Am. Math. Soc. (1986)
[41] Sullivan, D.: Bounds, quadratic differentials and renormalization conjectures. In: Browder, F. (ed.) Mathematics into the Twenty-first Century: 1988 Centennial Symposium, August 8–12, pp. 417–466. Am. Math. Soc. (1992) · Zbl 0936.37016
[42] Sullivan, D.: Linking the universalities of Milnor–Thurston, Feigenbaum and Ahlfors–Bers. In: Goldberg, L.R., Phillips, A.V. (eds.) Topological Methods in Modern Mathematics, pp. 543–564. Publish or Perish, Inc. (1993) · Zbl 0803.58018
[43] Tan, L.: Matings of quadratic polynomials. Ergodic Theory Dyn. Syst. 12, 589–620 (1992) · Zbl 0756.58024
[44] Weil, A.: [1958b] On the moduli of Riemann surfaces. In: Oeuvres Scient., vol. II, pp. 381–389. Springer (1980)
[45] Wolpert, S.: An asymptotic formula for the Taylor coefficients of automorphic forms. Proc. Am. Math. Soc. 78, 485–491 (1980) · Zbl 0445.30035 · doi:10.1090/S0002-9939-1980-0556618-6
[46] Wolpert, S.: Thurston’s Riemannian metric for Teichmüller space. J. Differ. Geom. 23, 143–174 (1986) · Zbl 0592.53037
[47] Zinsmeister, M.: Formalisme thermodynamique et systèmes dynamiques holomorphes. Société Mathématique de France (1996) · Zbl 0879.58042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.