×

Sedenionic formulation for the field equations of multifluid plasma. (English) Zbl 07825884

Summary: In this paper, the multifluid equations of a plasma are reformulated in terms of conic sedenions in order to better reflect the analogies between multifluid plasma equations and Maxwell equations of classical electromagnetism. This formalism also provides us an efficient mathematical tool for unification of equations of fluid dynamics and electromagnetism in a compact and elegant way. Although the presented formulation enables us to express all of the field equations related to different disciplines, a set of Maxwell equations for multifluid plasma is combined into a single sedenionic equation. Moreover, the wave equation with source terms is generalized in a form similar to gravi-electromagnetism counterpart previously derived using this type sedenion.

MSC:

78A25 Electromagnetic theory (general)
Full Text: DOI

References:

[1] Logan, J. G., Hydrodynamic analog of the classical field equations, Phys. Fluids5 (1962) 868-869.
[2] Troshkin, O. V., Perturbation waves in turbulent media, Comp. Maths. Math. Phys.33 (1993) 1613-1628. · Zbl 0821.76038
[3] Marmanis, H., Analogy between the Navier-Stokes equations and Maxwell’s equations: Application to turbulence, Phys. Fluids10 (1998) 1428-1437. · Zbl 1185.76666
[4] Kambe, T., A new formulation of equations of compressible fluids by analogy with Maxwell’s equations, Fluid Dyn. Res.42 (2010) 055502. · Zbl 1291.76270
[5] Kambe, T., On fluid Maxwell equations, in Frontiers of Fundamental Physics and Physics Education Research, eds. Sidharth, B. G.et al. (Springer, Cham, Heidelberg, 2014) pp. 287-295.
[6] Scofield, D. F. and Huq, P., Fluid dynamical Lorentz force law and Poynting theorem-introduction, Fluid Dyn. Res.46 (2014) 055513.
[7] Scofield, D. F. and Huq, P., Fluid dynamical Lorentz force law and Poynting theorem-derivation and implications, Fluid Dyn. Res.46 (2014) 055514.
[8] Abreu, E. M. C., Neto, J. A., Mendes, A. C. R. and Sasaki, N., Abelian and non-Abelian considerations on compressible fluids with Maxwell-type equations and minimal coupling with the electromagnetic field, Phys. Rev. D91 (2015) 125011.
[9] Thompson, R. J. and Moeller, T. M., Numerical and closed-form solutions for the Maxwell equations of incompressible flow, Phys. Fluids30 (2018) 083606.
[10] Christianto, V., Smarandache, F. and Umniyati, Y., A derivation of fluidic Maxwell-Proca equations for electrodynamics of superconductors and its implication to chiral cosmology model, Prespacetime J.9 (2018) 600-608.
[11] Thompson, R. J. and Moeller, T. M., A Maxwell formulation for the equations of a plasma, Phys. Plasmas19 (2012) 010702.
[12] Thompson, R. J. and Moeller, T. M., Classical field isomorphism in two-fluid plasmas, Phys. Plasmas19 (2012) 082116.
[13] Hamilton, W. R., Elements of Quaternions (Chelsea, 1899). · Zbl 1204.01046
[14] Demir, S., Uymaz, A. and Tanışlı, M., A new model for the reformulation of compressible fluid equations, Chin. J. Phys.55 (2017) 115-126. · Zbl 1539.76185
[15] Demir, S., Tanışlı, M., Şahin, N. and Kansu, M. E., Biquaternionic reformulation of multifluid plasma equations, Chin. J. Phys.55 (2017) 1329-1339. · Zbl 1539.35258
[16] Chanyal, B. C. and Pathak, M., Quaternionic approach to dual magneto-hydrodynamics of dyonic cold plasma, Adv. High Energy Phys.2018 (2018) 7843730. · Zbl 1402.76154
[17] Baez, J. C., The octonions, Bull. Amer. Math. Soc.39 (2002) 145-205. · Zbl 1026.17001
[18] Gogberashvili, M., Octonionic version of Dirac equations, Int. J. Mod. Phys. A21 (2006) 3513-3523. · Zbl 1095.81022
[19] De Leo, S. and Abdel-Khalek, K., Octonionic quantum mechanics and complex geometry, Prog. Theor. Phys.96 (1996) 823-831.
[20] Chanyal, B. C., Bisht, P. S. and Negi, O. P. S., Generalized octonion electrodynamics, J. Math. Phys.49 (2010) 1333-1343. · Zbl 1194.81312
[21] Demir, S., Tanışlı, M. and Kansu, M. E., Generalized hyperbolic octonion formulation for the fields of massive dyons and gravito-dyons, Int. J. Theor. Phys.52 (2013) 3696-3711. · Zbl 1274.81272
[22] Tanışlı, M., Kansu, M. E. and Demir, S., Reformulation of electromagnetic and gravitoelectromagnetic equations for Lorentz system with octonion algebra, Gen. Relativ. Gravit.46 (2014) 1739. · Zbl 1291.83021
[23] Weng, Z.-H., Some properties of dark matter field in the complex octonion space, Int. J. Mod. Phys. A30 (2015) 1550212. · Zbl 1339.83023
[24] Weng, Z.-H., Forces in the complex octonion curved space, Int. J. Geom. Methods Mod. Phys.13 (2016) 1650076. · Zbl 1342.83115
[25] Kansu, M. E., Tanışlı, M. and Demir, S., Octonion form of duality-invariant field equations for dyons, Turkish J. Phys.44 (2020) 10-23.
[26] Weng, Z.-H., Superconducting currents and charge gradients in the octonion spaces, Eur. Phys. J. Plus135 (2020) 443.
[27] Demir, S. and Tanışlı, M., Hyperbolic octonion formulation of the fluid Maxwell equations, J. Korean Phys. Soc.68 (2016) 616-623.
[28] Demir, S. and Zeren, E., Multifluid plasma equations in terms of hyperbolic octonions, Int. J. Geom. Methods Mod. Phys.15 (2018) 1850053. · Zbl 1391.76870
[29] Hestenes, D., Space-time Algebra (Gordon and Breach, 1966). · Zbl 0183.28901
[30] Demir, S., Tanışlı, M., Şahin, N. and Kansu, M. E., Reformulation of multifluid plasma equations in terms of spacetime algebra, J. Korean Phys. Soc.73 (2018) 524-530.
[31] Demir, S. and Tanışlı, M., Spacetime algebra for the reformulation of fluid field equations, Int. J. Geom. Methods Mod. Phys.14 (2017) 1750075. · Zbl 1431.83028
[32] Tian, Y., Similarity and consimilarity of elements in the real Cayley-Dickson algebras, Adv. Appl. Clifford Algebr.9 (1999) 61-76. · Zbl 1043.17500
[33] Imaeda, K. and Imaeda, M., Sedenions: Algebra and analysisAppl. Math. Comput.115 (2000) 77-88. · Zbl 1032.17003
[34] Borges, M. F., Roque, M. D. and Marão, J. A., Sedenions of Cayley-Dickson and the Cauchy-Riemann like relations, Int. J. Pure Appl. Math.68 (2011) 165-188. · Zbl 1218.30146
[35] Musés, C., Applied hypernumbers: computational concepts, Appl. Math. Comput.3 (1977) 211-226. · Zbl 0359.10050
[36] Musés, C., Hypernumbers-II. further concepts and computational applications, Appl. Math. Comput.4 (1978) 45-66. · Zbl 0377.10029
[37] Musés, C., Hypernumbers and quantum field theory with a summary of physically applicable hypernumber arithmetics and their geometries, Appl. Math. Comput.6 (1980) 63-94. · Zbl 0439.17011
[38] Musés, C., Hypernumbers applied or how they interface with the physical world, Appl. Math. Comput.60 (1994) 25-36. · Zbl 1024.01501
[39] Carmody, K., Circular and hyperbolic quaternions, octonions, and sedenions, Appl. Math. Comput.28 (1988) 47-72. · Zbl 0658.17025
[40] Carmody, K., Circular and hyperbolic quaternions, octonions, and sedenions — further results, Appl. Math. Comput.84 (1997) 27-47. · Zbl 0936.11025
[41] Köplinger, J., Signature of gravity in conic sedenions, Appl. Math. Comput.188 (2007) 942-947. · Zbl 1137.83353
[42] Köplinger, J., Gravity and electromagnetism on conic sedenions, Appl. Math. Comput.188 (2007) 948-953. · Zbl 1137.81338
[43] Köplinger, J., Hypernumbers and relativity, Appl. Math. Comput.188 (2007) 954-969. · Zbl 1117.83302
[44] Demir, S. and Tanışlı, M., Sedenionic formulation for generalized fields of dyons, Int. J. Theor. Phys.51 (2012) 1239-1252. · Zbl 1242.83090
[45] Chanyal, B. C., Sedenion unified theory of gravi-electromagnetism, Indian J. Phys.88 (2014) 1197-1205.
[46] Cariow, A. and Cariowa, G., An algorithm for fast multiplication of sedenions, Inform. Process. Lett.113 (2013) 324-331. · Zbl 1287.68191
[47] Weng, Z.-H., Color confinement and spatial dimensions in the complex-sedenion space, Adv. Math. Phys. (2017) 9876464. · Zbl 1400.81182
[48] Weng, Z.-H., Four interactions in the sedenion curved spaces, Int. J. Geom. Methods Mod. Phys.16 (2019) 1950019. · Zbl 1410.81027
[49] Maxwell, J. C., A Treatise on Electricity and Magnetism (Clarendon Press, 1873). · JFM 05.0556.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.