×

On the Einstein-Smoluchowski relation in the framework of generalized statistical mechanics. (English) Zbl 07820909

Summary: Anomalous statistical distributions that exhibit asymptotic behavior different from the exponential Boltzmann-Gibbs tail are typical of complex systems constrained by long-range interactions or time-persistent memory effects at the stationary non-equilibrium or meta-equilibrium. In this framework, a nonlinear Smoluchowski equation, which models the system’s time evolution towards its steady state, is obtained using the gradient flow method based on a free-energy potential related to a given generalized entropic form. Comparison of the stationary distribution resulting from the maximization of entropy for a canonical ensemble with the steady state distribution resulting from the Smoluchowski equation gives an Einstein-Smoluchowski-like relation. Despite this relationship between the mobility of particle \(\mu\) and the diffusion coefficient \(D\) retains its original expression: \(\mu = \beta D\), appropriate considerations, physically motivated, force us an interpretation of the parameter \(\beta\) different from the traditional meaning of inverse temperature.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Brown, R., A brief account of microscopical observations made in the months of june, july and 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag., 161 (1828)
[2] Einstein, A., Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Physics, 549 (1905) · JFM 36.0975.01
[3] von Smoluchowski, M., Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann. Physics, 756 (1906)
[4] Islam, M. A., Einstein-Smoluchowski diffusion equation: A discussion. Phys. Scr., 120 (2004) · Zbl 1139.82325
[5] Pomeasu, Y.; Piasecki, J., The langevin equation. C. R. Phys., 570 (2017)
[6] Callen, H. B.; Welton, T. A., Irreversibility and generalized noise. Phys. Rev., 34 (1951) · Zbl 0044.41201
[7] Newburgh, R., Einstein, perrin, and the reality of atoms: 1905 revisited. Amer. J. Phys., 6 (2006)
[8] Peskir, G., On the diffusion coefficient: The Einstein relation and beyond. Stoch. Model., 383 (2003) · Zbl 1037.60072
[9] Chavanis, P.-H., The generalized stochastic Smoluchowski equation. Entropy, 1006 (2019)
[10] Tsekov, R., Thermo-quantum diffusion. Internat. J. Theoret. Phys., 630 (2009) · Zbl 1172.81301
[11] Eliazar, I.; Klafter, J., Anomalous is ubiquitous. Ann. Physics, 2517 (2011) · Zbl 1238.60086
[12] Bronstein, I.; Israel, Y.; Kepten, E.; Mai, S.; Shav-Tal, Y.; Barkai, E.; Garini, Y., Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. (2009)
[13] Kozer, N.; Schreiber, G., Effect of crowding on protein-protein association rates: Fundamental differences between low and high mass crowding agents. Biophys. J., 1652 (2013)
[14] Jeon, J.-H.; Leijnse, N.; Oddershede, L. B.; Metzler, R., Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys. (2013)
[15] Evangelista, L. R.; Lenzi, E. K., Fractional Diffusion Equations and Anomalous Diffusion (2019), Cambridge University Press: Cambridge University Press Cambridge, UK
[16] Höfling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. (2013)
[17] Metzler, R.; Jeon, J.-H.; Cherstvy, A. G.; Barkai, E., Anomalous diffusion models and their properties: non-stationary, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys., 24128 (2014)
[18] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett., 3563 (1999)
[19] Risken, H., The Fokker-Planck Equation (1989), Springer Verlag: Springer Verlag Berlin · Zbl 0665.60084
[20] Kaniadakis, G.; Quarati, . P.; Scarfone, A. M., Generalized Brownian motion and anomalous diffusion. Riv. Mat. Univ. Parma, 171 (2001) · Zbl 1001.82085
[21] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A, R161 (2004) · Zbl 1075.82018
[22] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. (2000) · Zbl 0984.82032
[23] Dieterich, P.; Klages, R.; Chechkin, A. V., Fluctuation relations for anomalous dynamics generated by time-fractional Fokker-Planck equations. New J. Phys. (2015) · Zbl 1452.35239
[24] Yanovsky, V. V.; Chechkin, A. V.; Schertzer, D.; Tur, A. V., Lévy anomalous diffusion and fractional Fokker-Planck equation. Physica A, 13 (2000)
[25] Lenzi, E. K.; Anteneodo, C.; Borland, L., Escape time in anomalous diffusive media. Phys. Rev. E (2001)
[26] Anderson, J.; Kim, E.; Moradi, S., A fractional Fokker-Planck model for anomalous diffusion. Phys. Plasmas (2014)
[27] Tawfik, A. M.; Elkamash, I. S., On the correlation between kappa and Lévy stable distribution. Physica A (2022)
[28] Wada, T.; Scarfone, A. M., On the nonlinear Fokker-Planck equation associated with \(\kappa \)-entropy. AIP Conf. Proc., 177 (2007) · Zbl 1152.82323
[29] Wada, T.; Scarfone, A. M., Asymptotic solutions of a nonlinear diffusive equation in the framework of \(\kappa \)-generalized statistical mechanics. Eur. Phys. J. B, 65 (2009) · Zbl 1188.82036
[30] Scarfone, A. M.; Wada, T., Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the sharma-taneja-mittal entropy. Braz. J. Phys., 475 (2009)
[31] Wada, T., A nonlinear drift which leads to \(\kappa \)-generalized distributions. Eur. Phys. J. B, 287 (2010) · Zbl 1188.82053
[32] Tsallis, C., Introduction To Nonextensive Statistical Mechanics Approaching a Complex World (2009), Springer: Springer New York · Zbl 1172.82004
[33] Naudts, J., Generalised Thermostatistics (2011), Springer · Zbl 1231.82001
[34] Abe, S., Heat and entropy in nonextensive thermodynamics: transmutation from tsallis theory to rényi-entropy-based theory. Physica A, 417 (2001) · Zbl 0977.80003
[35] Wada, T.; Scarfone, A. M., The Boltzmann temperature and Lagrange multiplier in nonextensive thermostatistics. Prog. Theor. Phys. Suppl., 37 (2006) · Zbl 1104.82024
[36] Onsager, L., Reciprocal relations in irreversible processes. I. Phys. Rev., 405 (1931) · Zbl 0001.09501
[37] Onsager, L., Reciprocal relations in irreversible processes. II. Phys. Rev., 2265 (1938)
[38] Salicrú, M.; Menéndez, M. L.; Morales, D.; Pardo, L., Asymptotic distribution of \(( h , \phi )\)-entropies. Commun. Stat., 2015 (1993) · Zbl 0791.62005
[39] Ilíc, V. M.; Korbel, J.; Gupta, S.; Scarfone, A. M., An overview of generalized entropic forms. Eur. Phys. Lett., 50005 (2021)
[40] Frank, T. D.; Daffertshofer, A., Exact time-dependent solutions of the rényi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by sharma and mittal. Physica A, 351-366 (2000) · Zbl 1060.82518
[41] Johal, R. S., Composable entropy and deviation from macroscopic equilibrium. Phys. Lett. A, 345 (2004) · Zbl 1123.81315
[42] Tempesta, P., Formal groups and Z-entropies. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. (2016)
[43] Wannier, G. H., Statistical Physics (1966), Dover: Dover New York · Zbl 0203.57301
[44] Scarfone, A. M., Entropic forms and related algebras. Entropy, 624 (2013) · Zbl 1305.82011
[45] Lenzi, E. K.; Scarfone, A. M., Extensive-like and intensive-like thermodynamical variables in the generalized thermostatistics. Physica A, 2543 (2012)
[46] dos Santos, M. A.F.; Lenzi, E. K., Entropic nonadditivity, H-theorem, and nonlinear Klein-Kramers equations. Phys. Rev. E (2017)
[47] Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K., A nonlinear Fokker-Planck equation approach for interacting systems: anomalous diffusion and tsallis statistics. Phys. Lett. A, 1903 (2018) · Zbl 1396.35063
[48] Plastino, A. R.; Wedemann, R. S.; Nobre, F. D., H-theorems for systems of coupled nonlinear Fokker-Planck equations. Europhys. Lett., 11002 (2022)
[49] Scarfone, A. M., Intensive variables in the framework of the non-extensive thermostatistics. Phys. Lett. A, 2701 (2010) · Zbl 1237.80005
[50] Rényi, A., Probability Theory (1970), North-Holland Publ. Company: North-Holland Publ. Company Amsterdam · Zbl 0206.18002
[51] Martínez, S.; Pennini, F.; Plastion, A., Van der waals equation in a nonextensive scenario. Phys. Lett. A, 263 (2001)
[52] Abe, S., Thermodynamic limit of a classical gas in nonextensive statistical mechanics: Negative specific heat and polytropism. Phys. Lett. A, 424 (1999) · Zbl 0940.82009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.