×

On the diffusion coefficient: The Einstein relation and beyond. (English) Zbl 1037.60072

The author gives detailed derivations of the diffusion coefficient in various physical settings: in Einstein’s original setting, for particles subjected to an external force, for non-constant temperatures, for both external force and non-constant temperature, and for interacting particles. The method differs from Einstein’s original approach insofar as it does not use a fictitious force but concentrates on the dynamic equilibrium between the forces of pressure and friction acting upon a Brownian particle. One advantage of this approach is that the argument can easily be generalized to more difficult physical settings and leads to alternative derivations of and new insights into known principles and effects in mathematical physics (e.g., the Smoluchowski approximation, the Ludwig-Soret and Enskog-Chapman effects etc.). The style of the paper is expository, containing a good bibliography and many historical remarks.

MSC:

60J60 Diffusion processes
60J65 Brownian motion
35K05 Heat equation
35Q99 Partial differential equations of mathematical physics and other areas of application
82B40 Kinetic theory of gases in equilibrium statistical mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI

References:

[1] DOI: 10.1103/RevModPhys.15.1 · Zbl 0061.46403 · doi:10.1103/RevModPhys.15.1
[2] DOI: 10.1098/rspa.1928.0082 · doi:10.1098/rspa.1928.0082
[3] Chapman S., The Mathematical Theory of Non-uniform Gases (1958)
[4] Einstein A., Investigations on the Theory of the Brownian Movement (1956) · Zbl 0071.41205
[5] DOI: 10.1002/andp.18551700105 · doi:10.1002/andp.18551700105
[6] DOI: 10.1002/andp.19143480507 · doi:10.1002/andp.19143480507
[7] DOI: 10.1103/PhysRev.182.289 · doi:10.1103/PhysRev.182.289
[8] DOI: 10.1007/BF02743508 · doi:10.1007/BF02743508
[9] DOI: 10.3792/pia/1195572786 · Zbl 0060.29105 · doi:10.3792/pia/1195572786
[10] DOI: 10.3792/pja/1195572371 · Zbl 0063.02992 · doi:10.3792/pja/1195572371
[11] Itô K., Diffusion Processes and Their Sample Paths (1996) · Zbl 0837.60001 · doi:10.1007/978-3-642-62025-6
[12] DOI: 10.1007/BF01304217 · doi:10.1007/BF01304217
[13] DOI: 10.1147/rd.321.0107 · doi:10.1147/rd.321.0107
[14] DOI: 10.1016/S0031-8914(40)90098-2 · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[15] Langevin P., C. R. Acad. Sci. Paris 146 pp 530– (1908)
[16] Nelson E., Dynamical Theories of Brownian Motion (1967) · Zbl 0165.58502
[17] DOI: 10.1063/1.1696890 · doi:10.1063/1.1696890
[18] Page L., Introduction to Theoretical Physics (1952) · JFM 54.0928.05
[19] Planck M., Sitzungsber. Preuß. Akad. Wiss. 24 pp 324– (1917)
[20] Reif F., Fundamentals of Statistical and Thermal Physics (1965)
[21] Smoluchowski M. von, Ann. Phys. 48 pp 1103– (1915)
[22] DOI: 10.1007/BF02508479 · Zbl 0939.82026 · doi:10.1007/BF02508479
[23] DOI: 10.1098/rspa.2000.0514 · Zbl 1122.82315 · doi:10.1098/rspa.2000.0514
[24] DOI: 10.1103/PhysRev.36.823 · JFM 56.1277.03 · doi:10.1103/PhysRev.36.823
[25] Weidner R.T., Elementary Classical Physics. Vol I (Mechanics, Kinetic Theory, Thermodynamics) (1965)
[26] Wereide M.Th., Ann. Phys. 2 pp 67– (1914)
[27] DOI: 10.1016/0378-4371(89)90259-8 · doi:10.1016/0378-4371(89)90259-8
[28] DOI: 10.1016/0031-8914(68)90087-6 · doi:10.1016/0031-8914(68)90087-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.