×

Solutions to the non-cutoff Boltzmann equation uniformly near a Maxwellian. (English) Zbl 07817669

Summary: The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted \(L^\infty\) initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.

MSC:

35Q20 Boltzmann equations

References:

[1] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Anal. Appl., 9 (2011), 113-134. https://doi.org/10.1142/S0219530511001777 · Zbl 1220.35110 · doi:10.1142/S0219530511001777
[2] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions, Arch. Rational Mech. Anal., 202 (2011), 599-661. https://doi.org/10.1007/s00205-011-0432-0 · Zbl 1426.76660 · doi:10.1007/s00205-011-0432-0
[3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010. https://doi.org/10.1016/j.jfa.2011.10.007 · Zbl 1232.35110 · doi:10.1016/j.jfa.2011.10.007
[4] R. Alonso, Y. Morimoto, W. Sun, T. Yang, De Giorgi argument for weighted \(L^2 \cap L^\infty\) solutions to the non-cutoff Boltzmann equation, 2020, arXiv: 2010.10065.
[5] R. Alonso, Y. Morimoto, W. Sun, T. Yang, Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., 37 (2021), 189-292. https://doi.org/10.4171/rmi/1206 · Zbl 1459.35305 · doi:10.4171/rmi/1206
[6] S. Cameron, S. Snelson, Velocity decay estimates for Boltzmann equation with hard potentials, Nonlinearity, 33 (2020), 2941-2958. https://doi.org/10.1088/1361-6544/ab7729 · Zbl 1483.35265 · doi:10.1088/1361-6544/ab7729
[7] L. Desvillettes, C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316. https://doi.org/10.1007/s00222-004-0389-9 · Zbl 1162.82316 · doi:10.1007/s00222-004-0389-9
[8] R. Duan, S. Liu, S. Sakamoto, R. M. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Commun. Pure Appl. Math., 74 (2021), 932-1020. https://doi.org/10.1002/cpa.21920 · Zbl 1476.35161 · doi:10.1002/cpa.21920
[9] P. T. Gressman, R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847. https://doi.org/10.1090/S0894-0347-2011-00697-8 · Zbl 1248.35140 · doi:10.1090/S0894-0347-2011-00697-8
[10] P. T. Gressman, R. M. Strain, Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., 227 (2011), 2349-2384. https://doi.org/10.1016/j.aim.2011.05.005 · Zbl 1234.35173 · doi:10.1016/j.aim.2011.05.005
[11] L. He, Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction, Commun. Math. Phys., 312 (2012), 447-476. https://doi.org/10.1007/s00220-012-1481-4 · Zbl 1253.35093 · doi:10.1007/s00220-012-1481-4
[12] C. Henderson, S. Snelson, A. Tarfulea, Local well-posedness of the Boltzmann equation with polynomially decaying initial data, Kinet. Relat. Mod., 13 (2020), 837-867. https://doi.org/10.3934/krm.2020029 · Zbl 1442.35288 · doi:10.3934/krm.2020029
[13] F. Hérau, D. Tonon, I. Tristani, Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off, Commun. Math. Phys., 377 (2020), 697-771. https://doi.org/10.1007/s00220-020-03682-8 · Zbl 1442.35289 · doi:10.1007/s00220-020-03682-8
[14] C. Imbert, C. Mouhot, L. Silvestre, Decay estimates for large velocities in the Boltzmann equation without cutoff, J. Éc. polytech. Math., 7 (2020), 143-184. https://doi.org/10.5802/jep.113 · Zbl 1427.35278
[15] C. Imbert, C. Mouhot, L. Silvestre, Gaussian lower bounds for the Boltzmann equation without cutoff, SIAM J. Math. Anal., 52 (2020), 2930-2944. https://doi.org/10.1137/19M1252375 · Zbl 1442.35050 · doi:10.1137/19M1252375
[16] C. Imbert, L. Silvestre, Regularity for the Boltzmann equation conditional to macroscopic bounds, EMS Surv. Math. Sci., 7 (2020), 117-172. https://doi.org/10.4171/emss/37 · Zbl 1459.35307 · doi:10.4171/emss/37
[17] C. Imbert, L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., 22 (2020), 507-592. https://doi.org/10.4171/jems/928 · Zbl 1473.35077 · doi:10.4171/jems/928
[18] C. Imbert, L. Silvestre, The Schauder estimate for kinetic integral equations, Anal. PDE, 14 (2021), 171-204. https://doi.org/10.2140/apde.2021.14.171 · Zbl 1467.35069 · doi:10.2140/apde.2021.14.171
[19] C. Imbert, L. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off, J. Amer. Math. Soc., in press. · Zbl 1491.35081
[20] J. Kim, Y. Guo, H. J. Hwang, An \(L^2\) to \(L^\infty\) framework for the Landau equation, Peking Math. J., 3 (2020), 131-202. https://doi.org/10.1007/s42543-019-00018-x · Zbl 1456.35196 · doi:10.1007/s42543-019-00018-x
[21] Y. Morimoto, T. Yang, Local existence of polynomial decay solutions to the Boltzmann equation for soft potentials, Anal. Appl., 13 (2015), 663-683. https://doi.org/10.1142/S0219530514500079 · Zbl 1326.35225 · doi:10.1142/S0219530514500079
[22] L. Silvestre, A new regularization mechanism for the Boltzmann equation without cut-off, Commun. Math. Phys., 348 (2016), 69-100. https://doi.org/10.1007/s00220-016-2757-x · Zbl 1352.35091 · doi:10.1007/s00220-016-2757-x
[23] C. Villani, A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, Amsterdam: North-Holland, 2002, 71-305. https://doi.org/10.1016/S1874-5792(02)80004-0 · Zbl 1170.82369
[24] H. Zhang, Global solutions in \(W_k^{\zeta, p} L^{\infty}_x L^2_v\) for the Boltzmann equation without cutoff, 2020, arXiv: 2008.10269.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.