×

Well-posedness of spatially homogeneous Boltzmann equation with full-range interaction. (English) Zbl 1253.35093

Summary: In the present work, we give the coercivity estimates for the Boltzmann collision operator \(Q(\cdot , \cdot )\) without angular cut-off to clarify in which case the functional \({\langle -Q(g, f), f\rangle}\) will become truly sub-elliptic. Based on this observation and commutator estimates in [R. Alexandre et al., Arch. Ration. Mech. Anal. 198, No. 1, 39–123 (2010; Zbl 1257.76099)], the upper bound estimates for the collision operator in [Y. Chen and L. He, Arch. Ration. Mech. Anal. 201, No. 2, 501–548 (2011; Zbl 1318.76018)] and the stability results in [L. Desvillettes and C. Mouhot, Arch. Ration. Mech. Anal. 193, No. 2, 227–253 (2009; Zbl 1169.76054)], in the function space \({L^1_q\cap H^N}\), we establish global well-posedness or local well-posedness for the spatially homogeneous Boltzmann equation with full-range interaction (covering most of physical collision kernels).

MSC:

35Q20 Boltzmann equations
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
Full Text: DOI

References:

[1] Alexandre R., Desvillettes L., Villani C., Wennberg B.: Entropy dissipation and long- range interactions. Arch. Rat. Mech. Anal. 152(4), 327–355 (2000) · Zbl 0968.76076 · doi:10.1007/s002050000083
[2] Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Regularizing effect and local existence for non-cutoff Boltzmann equation. Arch. Rat. Mech. Anal. 198, 39–123 (2010) · Zbl 1257.76099 · doi:10.1007/s00205-010-0290-1
[3] Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513–581 (2011) · Zbl 1230.35082 · doi:10.1007/s00220-011-1242-9
[4] Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: The Boltzmann equation without angular cutoff in the whole space I: Global existence for soft potential, to appear in J. Funct. Anal. · Zbl 1232.35110
[5] Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential. Anal. Appl. (Singap.) 9(2), 113–134 (2011) · Zbl 1220.35110 · doi:10.1142/S0219530511001777
[6] Alexandre R., El Safadi M.: Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules. Math. Models Methods Appl. Sci. 15(6), 907–920 (2005) · Zbl 1161.35331 · doi:10.1142/S0218202505000613
[7] Alexandre R., El Safadi M.: Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules. Discrete Contin. Dyn. Syst. 24(1), 1–11 (2009) · Zbl 1168.35326 · doi:10.3934/dcds.2009.24.1
[8] Arkeryd L.: On the Boltzmann equation. Arch. Rat. Mech. Anal. 45, 1–34 (1972) · Zbl 0245.76060
[9] Chen Y., He L.: Smoothing estimates for Boltzmann equation with full-range interactions I: spatially homogeneous case. Arch. Rat. Mech. Anal. 201(2), 501–548 (2011) · Zbl 1318.76018 · doi:10.1007/s00205-010-0393-8
[10] Cianchi, A.: Some results in the theory of Orlicz spaces and application to variational problems. In: Nonlinear Analysis, Function Spaces and Applications, Proceedings of the Spring School held in Prague, May 31-June 6, 1998. Vol. 6, Praha: Czech Academy of Sciences, Mathematical Institute, 1999, pp. 50–92 · Zbl 0965.46017
[11] Desvillettes L., Wennberg B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm. Part. Diff. Eqs. 29(1-2), 133–155 (2004) · Zbl 1103.82020 · doi:10.1081/PDE-120028847
[12] Desvillettes L., Mouhot C.: Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions. Arch. Rat. Mech. Anal. 193(2), 227–253 (2009) · Zbl 1169.76054 · doi:10.1007/s00205-009-0233-x
[13] Fournier N.: Uniqueness for a class of spatially homogeneous Boltzmann equations without angular cutoff. J. Stat. Phys. 125, 927–946 (2006) · Zbl 1107.82045 · doi:10.1007/s10955-006-9208-6
[14] Fournier N., Mouhot C.: On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity. Commun. Math. Phys. 289, 803–824 (2009) · Zbl 1175.76129 · doi:10.1007/s00220-009-0807-3
[15] Fournier N., Guerin H.: On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity. J. Stat. Phys 131, 781–949 (2008) · Zbl 1144.82060 · doi:10.1007/s10955-008-9511-5
[16] Gressman P.T., Strain R.M.: Global Classical Solutions of the Boltzmann Equation without Angular Cut-off. J. Amer. Math. Soc. 24(3), 771–847 (2011) · Zbl 1248.35140 · doi:10.1090/S0894-0347-2011-00697-8
[17] Gressman P.T., Strain R.M.: Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production. Adv. Math. 227(6), 2349–2384 (2011) · Zbl 1234.35173 · doi:10.1016/j.aim.2011.05.005
[18] Huo Z., Morimoto Y., Ukai S., Yang T.: Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinet. Relat. Models 1(3), 453–489 (2008) · Zbl 1158.35332 · doi:10.3934/krm.2008.1.453
[19] Lu X., Mouhot C.: On Measure Solutions of the Boltzmann Equation, part I: Moment Production and Stability Estimates. J. Diff. Eqs. 252(4), 3305–3363 (2012) · Zbl 1234.35175 · doi:10.1016/j.jde.2011.10.021
[20] Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. PoincaréAnal. Non Linéaire 16, 467–501 (1999) · Zbl 0946.35075 · doi:10.1016/S0294-1449(99)80025-0
[21] Mouhot C., Strain R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) 87(5), 515–535 (2007) · Zbl 1388.76338
[22] Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rat. Mech. Anal. 173, 169–212 (2004) · Zbl 1063.76086 · doi:10.1007/s00205-004-0316-7
[23] Toscani G., Villani C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94, 619–637 (1999) · Zbl 0958.82044 · doi:10.1023/A:1004589506756
[24] Villani C.: On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143, 273–307 (1998) · Zbl 0912.45011 · doi:10.1007/s002050050106
[25] Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, vol. I, Amsterdam: North Holland, 2002, pp. 71–305 · Zbl 1170.82369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.