×

Sobolev regularity of the canonical solutions to \(\bar{\partial}\) on product domains. (English) Zbl 07816889

The Sobolev regularity of the canonical solution to \( \bar{ \partial } \) is studied on product domains of the form \( D_1 \times \cdots \times D_n \) with \( n \ge 2 \) where \( D_i \) is a smoothly bounded domain in \( \mathbb{C} \) for \( 1 \le i \le n \).
\( C^k \)-regularity of the canonical solution was established by M. Landucci (on the bi-disc) [Proc. Symp. Pure Math. 30, Part 1, 177–180 (1977; Zbl 0357.35063)] and J. Bertrams on poly-discs [Randregularität von Lösungen der \({\bar \partial}\)-Gleichung auf dem Polyzylinder und zweidimensionalen analytischen Polyedern. (Boundary regularity of solutions of the \({\bar \partial}\)-equation on the polycylinder and on two-dimensional analytic polyhedra). Bonn: Mathematisches Institut der Universität Bonn (1986; Zbl 0622.32001)]. The \( C^k \)-estimates can thus be carried over to more general product domains by means of bi-holomorphic mappings. The article under review establishes similar estimates to those of Bertrams, but in the context of Sobolev spaces. In particular, the following estimates are established: for non-negative integer \( k \), and \( 1 < p < \infty \), and for \( \bar{ \partial } \)-closed \( ( 0, 1 ) \)-forms, \( f \in W^{ k, p }_{ ( 0, 1 ) } ( \Omega ) \), \[ \| T f \|_{ W^{ k, p } ( \Omega ) } \lesssim \| f \|_{ W^{ k, p }_{ (0, 1 ) } ( \Omega ) } , \] where \( T \) is the canonical solution operator to \( \bar{ \partial } \) on \( \Omega \), a product domain.
The estimates above are especially interesting as the \( \bar{ \partial } \)-Neumann operator, \( N \), does not preserve Sobolev regularity, and in fact, exhibits singularities [the reviewer, Math. Ann. 337, No. 4, 797–816 (2007; Zbl 1130.32022)]. The canonical solution operator can be expressed in the form \[ T = \bar{ \partial }^{ \ast } N , \] and so the estimates suggest that there is a canceling of singularities from the application of the \( \bar{ \partial }^{ \ast } \) operator.
The following Sobolev regularity results of the Bergman projection (the orthogonal projection of \( L^2 \) functions onto \( L^2 \) holomorphic functions), \[ P = I - \bar{ \partial }^{ \ast } N \bar{ \partial } , \] are also presented: for \( f \in W^{ k, p } ( \Omega ) \), \[ \| P f \|_{ W^{ k, p } ( \Omega ) } \lesssim \| f \|_{ W^{ k, p } ( \Omega ) } . \] The regularity of the Bergman projection on product domains, in the case \( p = 2 \) can also be seen as a consequence of transversal symmetries (of the polydisc) [D. E. Barrett, Math. Ann. 258, 441–446 (1982; Zbl 0486.32015)].
The preservation of Sobolev regularity even on smooth pseudoconvex domains is not always guaranteed [D. E. Barrett, Acta Math. 168, No. 1–2, 1–10 (1992; Zbl 0779.32013)] so this fact combined with the above mentioned singular behavior of the \( \bar{ \partial } \)-Neumann operator makes the regularity of the Bergman projection here noteworthy.

MSC:

32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A36 Bergman spaces of functions in several complex variables

References:

[1] Bell, Steven R., The Cauchy transform, potential theory and conformal mapping, 2016, Chapman & Hall/CRC · Zbl 1359.30001
[2] Chakrabarti, Debraj; Shaw, Mei-Chi, The Cauchy-Riemann equations on product domains, Math. Ann., 349, 4, 977-998, 2011 · Zbl 1223.32023 · doi:10.1007/s00208-010-0547-x
[3] Chakrabarti, Debraj; Zeytuncu, Yunus E., \({L}^p\) mapping properties of the Bergman projection on the Hartogs triangle, Proc. Am. Math. Soc., 144, 4, 1643-1653, 2016 · Zbl 1341.32006 · doi:10.1090/proc/12820
[4] Chen, Liwei, The \({L}^p\) boundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl., 448, 1, 598-610, 2017 · Zbl 1361.32005 · doi:10.1016/j.jmaa.2016.11.024
[5] Chen, Liwei; McNeal, Jeffery D., Product domains, multi-Cauchy transforms, and the \(\bar{\partial }\) equation, Adv. Math., 360, 42 p. pp., 2020 · Zbl 1439.32097
[6] Dong, Robert Xin; Li, Song-Ying; Treuer, John N., Sharp pointwise and uniform estimates for \(\bar{\partial } \), Anal. PDE, 16, 2, 407-431, 2023 · Zbl 1517.32054 · doi:10.2140/apde.2023.16.407
[7] Dong, Robert Xin; Pan, Yifei; Zhang, Yuan, Uniform estimates for the canonical solution to the \(\bar{\partial } \)-equation on product domains, 2006
[8] Edholm, Luke D.; McNeal, Jeffery D., Sobolev mapping of some holomorphic projections, J. Geom. Anal., 30, 2, 1293-1311, 2020 · Zbl 1446.32005 · doi:10.1007/s12220-019-00345-6
[9] Evans, Lawrence C., Partial differential equations, 19, xxii+749 p. pp., 2010, American Mathematical Society · Zbl 1194.35001
[10] Jerison, David; Kenig, Carlos E., The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130, 1, 161-219, 1995 · Zbl 0832.35034 · doi:10.1006/jfan.1995.1067
[11] Jin, Muzhi; Yuan, Yuan, On the canonical solution of \(\bar{\partial }\) on polydiscs, C. R. Math. Acad. Sci. Paris, 358, 5, 523-528, 2020 · Zbl 1457.32099
[12] Landucci, Mario, On the projection of \({L}^2({D})\) into \({H}({D})\), Duke Math. J., 42, 231-237, 1975 · Zbl 0332.35047
[13] Lanzani, Loredana; Stein, Elias M., Szegö and Bergman projections on non-smooth planar domains, J. Geom. Anal., 14, 1, 63-86, 2004 · Zbl 1046.30023 · doi:10.1007/BF02921866
[14] Lanzani, Loredana; Stein, Elias M., The Bergman projection in \({L}^p\) for domains with minimal smoothness, Ill. J. Math., 56, 1, 127-154, 2012 · Zbl 1282.32001
[15] Li, Song-Ying, Solving the Kerzman’s problem on the sup-norm estimate for \(\bar{\partial }\) on product domains, 2022
[16] McNeal, Jeffery D.; Stein, Elias M., Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73, 1, 177-199, 1994 · Zbl 0801.32008
[17] Nagel, Alexander; Rosay, Jean Pierre; Stein, Elias M.; Wainger, Stephen, Estimates for the Bergman and Szegö kernels in \(\mathbb{C}^2\), Ann. Math., 129, 1, 113-149, 1989 · Zbl 0667.32016 · doi:10.2307/1971487
[18] Pan, Yifei; Zhang, Yuan, Optimal Sobolev regularity of \(\bar{\partial }\) on the Hartogs triangle., 2022
[19] Pan, Yifei; Zhang, Yuan, Weighted Sobolev estimates of the truncated Beurling operator, 2022 · Zbl 1536.30091
[20] Phong, Duong H.; Stein, Elias M., Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains, Duke Math. J., 44, 695-704, 1977 · Zbl 0392.32014
[21] Prats, Martí, Sobolev regularity of the Beurling transform on planar domains, 61, 2, 291-336, 2017 · Zbl 1375.30026
[22] Yuan, Yuan, Uniform estimates of the Cauchy-Riemann equations on product domains, 2022
[23] Yuan, Yuan; Zhang, Yuan, Weighted Sobolev estimates of \(\bar{\partial }\) on domains covered by polydiscs
[24] Zeytuncu, Yunus E., A survey of the \({L}^p\) regularity of the Bergman projection, Complex Anal. Synerg., 6, 2, 7 p. pp., 2020 · Zbl 1464.32006
[25] Zhang, Yuan, Optimal \({L}^p\) regularity for \(\bar{\partial }\) on the Hartogs triangle, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.