×

The \(L^{p}\) boundedness of the Bergman projection for a class of bounded Hartogs domains. (English) Zbl 1361.32005

The author studies the Bergman projection on a class of bounded Hartogs domains that generalize the case of the Hartogs triangle \(\mathbb{H}=\{(z_1,z_2)\in\mathbb{C}^2: \left| z_1\right|<\left| z_2\right|<1\}\). In an analogous fashion as to what is known for the Hartogs triangle, the main result of the paper shows that, for the class of domains considered, the Bergman projection is bounded on \(L^p\) if and only if \(\frac{2n}{n+1}<p<\frac{2n}{n-1}\)
The exact class of domains studied is defined in the following way. For \(j=1,\ldots, \ell\) let \(\Omega_j\) be a domain in \(\mathbb{C}^{k_j}\) and let \(\phi_j:\Omega_j\to \mathbb{B}^{k_j}\) be a biholomorphic map, where \(\mathbb{B}^k\) is the unit ball in \(\mathbb{C}^k\). For the sequence \(m_0=0\), \(m_j=\sum_{s=1}^{j} k_s\) and \(m_l=k<n\), let \(\tilde{z}_j=(z_{m_{j-1}+1},\ldots, z_{m_j})\). The domains considered are then defined by \[ \mathbb{H}^n_{k_j, \phi_j}=\Big\{z\in\mathbb{C}^n: \max_{1\leq j\leq l} \left| \phi_j(\tilde{z}_j)\right|<\left| z_{k+1}\right|<\cdots<| z_{n}|<1\Big\}. \] The method of proof is an application of Schur’s Test.

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A36 Bergman spaces of functions in several complex variables
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)

References:

[1] Barrett, D.; Şahutoğlu, S., Irregularity of the Bergman projection on worm domains in \(C^n\), Michigan Math. J., 61, 1, 187-198 (2012) · Zbl 1264.32025
[2] Bell, S., Biholomorphic mappings and the \(\overline{\partial} \)-problem, Ann. of Math., 114, 103-113 (1981) · Zbl 0423.32009
[3] Chakrabarti, D.; Shaw, M.-C., The Cauchy-Riemann equations on product domains, Math. Ann., 349, 4, 977-998 (2011) · Zbl 1223.32023
[4] Chakrabarti, D.; Shaw, M.-C., Sobolev regularity of the \(\overline{\partial} \)-equation on the Hartogs triangle, Math. Ann., 356, 1, 241-258 (2013) · Zbl 1276.32027
[5] Chakrabarti, D.; Zeytuncu, Y. E., \(L^p\) mapping properties of the Bergman projection on the Hartogs triangle, Proc. Amer. Math. Soc., 144, 4, 1643-1653 (2016) · Zbl 1341.32006
[6] Charpentier, P.; Dupain, Y., Estimates for the Bergman and Szegő projections for pseudoconvex domains of finite type with locally diagonalizable Levi forms, Publ. Mat., 50, 413-446 (2006) · Zbl 1120.32002
[7] Edholm, L., Bergman theory of certain generalized Hartogs triangles, Pacific J. Math., 284, 2, 327-342 (2016) · Zbl 1351.32007
[8] Edholm, L.; McNeal, J., The Bergman projection on fat Hartogs triangles: \(L^p\) boundedness, Proc. Amer. Math. Soc., 144, 5, 2185-2196 (2016) · Zbl 1337.32010
[9] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26, 1-65 (1974) · Zbl 0289.32012
[10] Hedenmalm, H.; Korenblum, B.; Zhu, K., Theory of Bergman Spaces (2000), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0955.32003
[11] Huo, Z., The Bergman kernel on some Hartogs domains, J. Geom. Anal. (2016)
[12] Krantz, S., Function Theory of Several Complex Variables (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1087.32001
[13] Krantz, S.; Peloso, M., New results on the Bergman kernel of the worm domain in complex space, Electron. Res. Announc. Math. Sci., 14, 35-41 (2007) · Zbl 1140.32310
[14] Krantz, S.; Peloso, M., The Bergman kernel and projection on non-smooth worm domains, Houston J. Math., 34, 873-950 (2008) · Zbl 1161.32016
[15] Lanzani, L.; Stein, E. M., Szegő and Bergman projections on non-smooth planar domains, J. Geom. Anal., 14, 1, 63-86 (2004) · Zbl 1046.30023
[16] Lanzani, L.; Stein, E. M., The Bergman projection in \(L^p\) for domains with minimal smoothness, Illinois J. Math., 56, 1, 127-154 (2012) · Zbl 1282.32001
[17] McNeal, J., Boundary behavior of the Bergman kernel function in \(C^2\), Duke Math. J., 58, 2, 499-512 (1989) · Zbl 0675.32020
[18] McNeal, J., Estimates on the Bergman kernel of convex domains, Adv. Math., 109, 108-139 (1994) · Zbl 0816.32018
[19] McNeal, J.; Stein, E. M., Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., 73, 1, 177-199 (1994) · Zbl 0801.32008
[20] Nagel, A.; Rosay, J.-P.; Stein, E. M.; Wainger, S., Estimates for the Bergman and Szegő kernels in \(C^2\), Ann. of Math., 129, 2, 113-149 (1989) · Zbl 0667.32016
[21] Phong, D.; Stein, E. M., Estimates for the Bergman and Szegő projections on strongly pseudoconvex domains, Duke Math. J., 44, 3, 695-704 (1977) · Zbl 0392.32014
[22] Rudin, W., Function Theory in the Unit Ball of \(C^n (1980)\), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0495.32001
[23] Zeytuncu, Y. E., \(L^p\) regularity of weighted Bergman projections, Trans. Amer. Math. Soc., 365, 6, 2959-2976 (2013) · Zbl 1278.32007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.