×

Representative functions, variational convergence and almost convexity. (English) Zbl 07812621

Summary: We develop a new epi-convergence based on the use of bounded convergent nets on the product topology of the strong topology on the primal space and weak star topology on the dual space of a general real Banach space. We study the propagation of the associated variational convergences through conjugation of convex functions defined on this product space. These results are then applied to the problem of construction of a bigger-conjugate representative function for the recession operator associated with a maximal monotone operator on this real Banach space. This is then used to study the relationship between the recession operator of a maximal monotone operator and the normal-cone operator associated with the closed, convex hull of the domain of that monotone operator. This allows us to show that the strong closure of the domain of any maximal monotone operator is convex in a general real Banach space.

MSC:

47H05 Monotone operators and generalizations
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
47H04 Set-valued operators
49J53 Set-valued and variational analysis

References:

[1] Beer, G., Topologies on Closed and Closed Convex Sets (1993), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0792.54008 · doi:10.1007/978-94-015-8149-3
[2] Borwein, J. M., Maximal monotonicity via convex analysis, J. Convex Anal., 13, 561-586 (2006) · Zbl 1111.47042
[3] Borwein, J. M.; Vanderwerff, J. D., Convex Functions: Constructions, Characterizations and Counterexamples (2010) · Zbl 1191.26001 · doi:10.1017/CBO9781139087322
[4] Borwein, J.M., Yao, L.: Recent progress on Monotone Operator Theory (2013) arXiv:1210.3401v3 [math.FA] 21 Jul 2013
[5] Borwein, J. M.; Yao, L., Structure theory for maximally monotone operators with points of continuity, J. Optim. Theory Appl., 157, 1, 1-24 (2013) · Zbl 1282.47067 · doi:10.1007/s10957-012-0162-y
[6] Borwein, J. M.; Yao, L., Some results on the convexity of the closure of the domain of a maximally monotone operator, Optim. Lett., 8, 237-246 (2014) · Zbl 1298.47061 · doi:10.1007/s11590-012-0564-7
[7] Borwein, J. M.; Fitzpatrick, S.; Girgensohn, R., Subdifferentials whose graphs are not norm weak closed, Can. Math. Bull., 4, 538-545 (2003) · Zbl 1053.46008 · doi:10.4153/CMB-2003-051-5
[8] Burachik, R. S.; Iusem, A. N., Set-Valued Mappings and Enlargements of Monotone Operators, Optimization and Its Applications (2008), Berlin: Springer, Berlin · Zbl 1154.49001
[9] Burachik, R.; Svaiter, B. F., \( \varepsilon \)-enlargements of maximal monotone operators in Banach spaces, Set-Valued Anal., 7, 117-132 (2002) · Zbl 0948.47050 · doi:10.1023/A:1008730230603
[10] Burachik, R.; Svaiter, B. F., Maximal monotone operators, convex functions and a special family of enlargements, Set-Valued Anal., 10, 4, 297-316 (2002) · Zbl 1033.47036 · doi:10.1023/A:1020639314056
[11] Eberhard, A.; Wenczel, R., All maximal monotone operators in a Banach space are of type FPV, Set-Valued Var. Anal., 22, 3, 597-615 (2014) · Zbl 1440.47041 · doi:10.1007/s11228-014-0275-6
[12] Eberhard, A.; Wenczel, R., On the maximal extensions of monotone operators and criteria for maximality, J. Convex Anal., 25, 1, 597-615 (2017)
[13] Eberhard, A.; Wenczel, R., On the FPV property, monotone operator structure and the monotone polar of representable monotone sets, Set-Valued Var. Anal., 29, 301-339 (2021) · Zbl 1495.47078 · doi:10.1007/s11228-020-00549-x
[14] Fitzpatrick, S.; Fitzpatrick, S.; Giles, J., Representing monotone operators by convex functions, Proc. Centre Math. Appl. Workshop/Miniconference on Functional Analysis and Optimization, 59-65 (1988) · Zbl 0669.47029
[15] García Ramos, Y., New properties of the variational sum of monotone operators, J. Convex Anal., 16, 3-4, 767-778 (2009) · Zbl 1191.47065
[16] García, Y.; Lassonde, M., Representable monotone operators and limits of sequences of maximal monotone operators, Set-Valued Anal., 20, 61-73 (2012) · Zbl 1277.47066 · doi:10.1007/s11228-011-0178-8
[17] Holmes, R. B., Geometric Functional Analysis and Its Applications (1975), Berlin: Springer, Berlin · Zbl 0336.46001
[18] Martínez-Legaz, J.-E.; Svaiter, B. F., Monotone operators representable by l.s.c. Convex functions, Set-Valued Anal., 13, 21-46 (2005) · Zbl 1083.47036 · doi:10.1007/s11228-004-4170-4
[19] Pennanen, T.; Rockafellar, R. T.; Thera, M., Graphical convergence of sums of monotone mappings, Proc. Am. Math. Soc., 130, 8, 2261-2269 (2002) · Zbl 1010.47031 · doi:10.1090/S0002-9939-02-06450-X
[20] Pennanen, T.; Revalski, J. P.; Thera, M., Graph-distance convergence and uniform local boundedness of monotone mappings, Proc. Am. Math. Soc., 131, 2, 3721-3729 (2003) · Zbl 1052.47047 · doi:10.1090/S0002-9939-03-07179-X
[21] Penot, J.-P.; Zălinescu, C., Continuity of the Legendre-Fenchel transform for some variational convergence, Optimization, 53, 5-6, 549-562 (2004) · Zbl 1153.49310 · doi:10.1080/02331930412331329533
[22] Penot, J.-P.; Zălinescu, C., Bounded convergence of perturbed minimisation problems, Optimization, 53, 5-6, 625-640 (2005) · Zbl 1153.49316
[23] Penot, J.-P.; Zălinescu, C., Bounded (Hausdorff) convergence: basic facts and applications, Variational Analysis and Applications, Nonconvex Optimization and Its Applications, 827-854 (2005) · Zbl 1113.49016 · doi:10.1007/0-387-24276-7_49
[24] Penot, J.-P.; Zălinescu, C., On the convergence of maximal monotone operators, Proc. Am. Math. Soc., 134, 7, 1937-1946 (2006) · Zbl 1099.47042 · doi:10.1090/S0002-9939-05-08275-4
[25] Penot, J.-P.; Zălinescu, C., Convex analysis can be helpful for the asymptotic analysis of monotone operators, Math. Program. Ser. B, 116, 481-498 (2009) · Zbl 1156.47049 · doi:10.1007/s10107-007-0114-8
[26] Phelps, R.-R., Convex Functions, Monotone Operators and Differentiability (1992), Berlin: Springer, Berlin
[27] Revalski, J. P.; Théra, M., Generalized sums of monotone operators, C. R. Acad. Sci., Sér. 1 Math., 329, 11, 979-984 (1999) · Zbl 0952.47041
[28] Rockafellar, R. T., Level-sets and continuity of conjugate convex functions, Trans. Am. Math. Soc., 23, 46-61 (1966) · Zbl 0145.15802 · doi:10.1090/S0002-9947-1966-0192318-X
[29] Rockafellar, R. T., Convex Analysis (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401 · doi:10.1515/9781400873173
[30] Simons, S., From Hahn-Banach to Monotonicity (2008) · Zbl 1131.47050
[31] Simons, S., Positive sets and monotone sets, J. Convex Anal., 14, 2, 297-317 (2017) · Zbl 1128.47048
[32] Verona, M.E., Verona, A.: On the convexity of the closure of the domain/range of a maximally monotone operator (2022). Preprint (unpublished but access via researchgate) · Zbl 1540.47076
[33] Voisei, M. D.; Zălinescu, C., Maximal monotonicity criteria for the composition and the sum under weak interiority conditions, Math. Program. Ser. B, 123, 265-283 (2010) · Zbl 1182.47040 · doi:10.1007/s10107-009-0314-5
[34] Zălinescu, C., Convex Analysis in General Vector Spaces (2002), Singapore: World Scientific, Singapore · Zbl 1023.46003 · doi:10.1142/5021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.