×

Hyperbola method on toric varieties. (Méthode de l’hyperbole sur les variétés toriques.) (English. French summary) Zbl 07811890

Pieropan and Schindler obtain here estimates for the number of Campana points of bounded height on toric varieties over \(\mathbb{Q}\). Recall that a Campana point is a notion that “interpolates” between a rational and an integral point on orbifolds. Their method extends the work of V. Blomer and J. Brüdern [J. Reine Angew. Math. 737, 255–300 (2018; Zbl 1408.11099)] who treated the case of products of projective spaces.
More precisely, let \(X\) be a complete smooth split toric variety over \(\mathbb{Q}\). Denote by \(D_1,\cdots,D_s\) the prime torus invariant divisors corresponding to rays of the fan that defines \(X\). Assume that \(L=\sum_{i=1}^s\frac{1}{m_i}D_i\) is ample and let \(H_L:X(\mathbb{Q})\rightarrow\mathbb{R}_+\) be the height associated to \(L\). Let \(N(B)\) be the number of Campana points on the orbifold \(\bigl(X,\sum_{i=1}^s(1-1/m_i)D_i\bigr)\) that have height \(H_L\) at most \(B\) and do not lie in \(\bigcup_{i=1}^sD_i\). The present authors prove that \[ N(B)=cB(\ln B)^{r-1}+O\bigl(B(\ln B)^{r-2}(\ln\ln D)^s\bigr)\ , \] where \(r\) is the rank of the Picard group of \(X\) and \(c\) is a positive constant.
This result matches the prediction of a Manin-type conjecture on Fano orbifolds [M. Pieropan et al., Proc. Lond. Math. Soc. (3) 123, No. 1, 57–101 (2021; Zbl 1479.11116)].

MSC:

11P21 Lattice points in specified regions
11A25 Arithmetic functions; related numbers; inversion formulas
11G50 Heights
14G05 Rational points
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[1] Arzhantsev, I.; Derenthal, U.; Hausen, J.; Laface, A., Cox rings, 144, 2015, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1360.14001
[2] Blomer, V.; Brüdern, J., Rational points on the inner product cone via the hyperbola method, Mathematika, 63, 3, 780-796, 2017 · Zbl 1426.11119 · doi:10.1112/S0025579317000183
[3] Blomer, V.; Brüdern, J., Counting in hyperbolic spikes: The diophantine analysis of multihomogeneous diagonal equations, J. reine angew. Math., 737, 255-300, 2018 · Zbl 1408.11099 · doi:10.1515/crelle-2015-0037
[4] Balestrieri, F.; Brandes, J.; Kaesberg, M.; Ortmann, J.; Pieropan, M.; Winter, R., Campana points on diagonal hypersurfaces, Women in numbers Europe IV-research directions in number theory, to appear, 2023
[5] Bateman, P. T.; Grosswald, E., On a theorem of Erdös and Szekeres, Illinois J. Math., 2, 88-98, 1958 · Zbl 0079.07104
[6] Browning, T. D.; Hu, L. Q., Counting rational points on biquadratic hypersurfaces, Adv. Math., 349, 920-940, 2019 · Zbl 1435.11066 · doi:10.1016/j.aim.2019.04.031
[7] Batyrev, V. V.; Manin, Y. I., Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann., 286, 1-3, 27-43, 1990 · Zbl 0679.14008 · doi:10.1007/BF01453564
[8] Batyrev, V. V.; Tschinkel, Yu., Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Notices, 12, 591-635, 1995 · Zbl 0890.14008 · doi:10.1155/S1073792895000365
[9] Batyrev, V. V.; Tschinkel, Yu., Number theory (Halifax, NS, 1994), 15, Rational points on toric varieties, 39-48, 1995, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0871.14040
[10] Batyrev, V. V.; Tschinkel, Yu., Height zeta functions of toric varieties, J. Math. Sci., 82, 1, 3220-3239, 1996 · Zbl 0915.14013 · doi:10.1007/BF02362469
[11] Batyrev, V. V.; Tschinkel, Yu., Manin’s conjecture for toric varieties, J. Algebraic Geom., 7, 1, 15-53, 1998 · Zbl 0946.14009
[12] Browning, T. D.; Van Valckenborgh, K., Sums of three squareful numbers, Experiment. Math., 21, 2, 204-211, 2012 · Zbl 1327.11022 · doi:10.1080/10586458.2011.605733
[13] Browning, T. D.; Yamagishi, S., Arithmetic of higher-dimensional orbifolds and a mixed Waring problem, Math. Z., 299, 1-2, 1071-1101, 2021 · Zbl 1508.11041 · doi:10.1007/s00209-021-02695-w
[14] Campana, F., Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), 54, 3, 499-630, 2004 · Zbl 1062.14014 · doi:10.5802/aif.2027
[15] Campana, F., Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, 10, 4, 809-934, 2011 · Zbl 1236.14039 · doi:10.1017/S1474748010000101
[16] Campana, F., Rational points, rational curves, and entire holomorphic curves on projective varieties, 654, Special manifolds, arithmetic and hyperbolic aspects: a short survey, 23-52, 2015, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1470.14026 · doi:10.1090/conm/654/13214
[17] Cox, D. A.; Little, J. B.; Schenck, H. K., Toric varieties, 124, 2011, American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1223.14001
[18] Chambert-Loir, A.; Tschinkel, Yu., Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math., 2, 3, 351-429, 2010 · Zbl 1206.11086 · doi:10.1142/S1793744210000223
[19] Cox, D. A., The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., 4, 1, 17-50, 1995 · Zbl 0846.14032
[20] Dantzig, G. B., Linear programming and extensions, 1998, Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 0997.90504
[21] Davenport, H., On a principle of Lipschitz, J. London Math. Soc., 26, 179-183, 1951 · Zbl 0042.27504 · doi:10.1112/jlms/s1-26.3.179
[22] de la Bretèche, R., Compter des points d’une variété torique, J. Number Theory, 87, 2, 315-331, 2001 · Zbl 1020.11045 · doi:10.1006/jnth.2000.2605
[23] de la Bretèche, R., Estimation de sommes multiples de fonctions arithmétiques, Compositio Math., 128, 3, 261-298, 2001 · Zbl 1001.11036 · doi:10.1023/A:1011803816545
[24] Erdős, P.; Szekeres, G., Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), 7, 2, 92-102, 1934 · JFM 60.0893.02
[25] Frei, C.; Pieropan, M., O-minimality on twisted universal torsors and Manin’s conjecture over number fields, Ann. Sci. École Norm. Sup. (4), 49, 4, 757-811, 2016 · Zbl 1422.14046 · doi:10.24033/asens.2295
[26] Gongyo, Y.; Okawa, S.; Sannai, A.; Takagi, S., Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom., 24, 1, 159-182, 2015 · Zbl 1444.14044 · doi:10.1090/S1056-3911-2014-00641-X
[27] Gould, Henry W., Combinatorial identities. A standardized set of tables listing 500 binomial coefficient summations, 139, 1972, Henry W. Gould: Henry W. Gould, Morgantown, WV · Zbl 0241.05011
[28] Harari, D., Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 226, Weak approximation on algebraic varieties, 43-60, 2004, Birkhäuser Boston: Birkhäuser Boston, Boston, MA · Zbl 1197.11068 · doi:10.1007/978-0-8176-8170-8_3
[29] Mignot, Teddy, Points de hauteur bornée sur les hypersurfaces lisses de l’espace triprojectif, Int. J. Number Theory, 11, 3, 945-995, 2015 · Zbl 1365.11032 · doi:10.1142/S1793042115500529
[30] Mignot, Teddy, Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques, Acta Arith., 172, 1, 1-97, 2016 · Zbl 1346.11030
[31] Mignot, Teddy, Points de hauteur bornée sur les hypersurfaces lisses des variét��s toriques. Cas général, 2018
[32] Pieropan, M., Imaginary quadratic points on toric varieties via universal torsors, Manuscripta Math., 150, 3-4, 415-439, 2016 · Zbl 1350.11069 · doi:10.1007/s00229-015-0817-8
[33] Pieropan, M.; Smeets, A.; Tanimoto, S.; Várilly-Alvarado, A., Campana points of bounded height on vector group compactifications, Proc. London Math. Soc. (3), 123, 1, 57-101, 2021 · Zbl 1479.11116 · doi:10.1112/plms.12391
[34] Salberger, P., Tamagawa measures on universal torsors and points of bounded height on Fano varieties, 251, 91-258, 1998, Société Mathématique de France: Société Mathématique de France, Paris · Zbl 0959.14007
[35] Santens, Tim, Diagonal quartic surfaces with a Brauer-Manin obstruction, Compositio Math., 159, 4, 659-710, 2023 · Zbl 1520.14051 · doi:10.1112/S0010437X22007916
[36] Schindler, D., Bihomogeneous forms in many variables, J. Théor. Nombres Bordeaux, 26, 2, 483-506, 2014 · Zbl 1425.11055 · doi:10.5802/jtnb.876
[37] Schindler, D., Manin’s conjecture for certain biprojective hypersurfaces, J. reine angew. Math., 714, 209-250, 2016 · Zbl 1343.11061 · doi:10.1515/crelle-2014-0026
[38] Shute, Alec, Sums of four squareful numbers, 2021
[39] Shute, Alec, On the leading constant in the Manin-type conjecture for Campana points, Acta Arith., 204, 4, 317-346, 2022 · Zbl 1517.11072 · doi:10.4064/aa210430-1-7
[40] Streeter, Sam, Campana points and powerful values of norm forms, Math. Z., 301, 1, 627-664, 2022 · Zbl 1516.11070 · doi:10.1007/s00209-021-02922-4
[41] Van Valckenborgh, K., Squareful numbers in hyperplanes, Algebra Number Theory, 6, 5, 1019-1041, 2012 · Zbl 1321.11038 · doi:10.2140/ant.2012.6.1019
[42] Xiao, Huan, Campana points on biequivariant compactifications of the Heisenberg group, European J. Math., 8, 1, 205-246, 2022 · Zbl 1497.11169 · doi:10.1007/s40879-021-00498-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.