×

Orbifoldes géométriques spéciales et classification biméromorphe des variétés Kählériennes compactes. (French. English summary) Zbl 1236.14039

This paper is a sequel to the author’s famous paper [Ann. Inst. Fourier 54, No. 3, 499–630 (2004; Zbl 1062.14014)] in which he introduced the theory of geometric orbifolds, that is pairs \((X, \Delta)\) where \(X\) is a normal complex variety (most of the time \(X\) is a compact Kähler or projective manifold) and \(\Delta\) is an effective \(\mathbb Q\)-divisor \(\Delta=\sum (1-\frac{1}{m(D)}) D\) on \(X\) with \(m(D) \geq 1\) being rational or \(\infty\) (most of the time \(m(D)\) is an integer). This definition is basically the same as the definition of a log pair in the minimal model program MMP, but the orbifold divisor \(\Delta\) plays a complete different role. While in the MMP the divisor \(\Delta\) is related to the singularities of (some birational model of) \(X\), the orbifold structure is typically defined in terms of some fibration \(f: Y \rightarrow X\) mapping onto \(X\). Given such a fibration and a prime Weil divisor \(D \subset X\), one defines the multiplicity \(m(D)\) (or more precisely \(m(D, f)\)) as the infimum of the multiplicities \(a_i\) appearing in the decomposition \(f^* D = \sum a_i E_i + R\) where the \(E_i\) map surjectively onto \(D\) and \(R\) does not. In his aforementioned paper the author showed, among many other things, that if one endows the base of a fibration with such an orbifold structure, one obtains a much closer relation between the geometric properties of the total space \(Y\) on the one side and the general fibre \(F\) and the orbifold base \((X, \Delta)\) on the other side. For example we always get an exact sequence of orbifold fundamental groups, up to taking an appropriate bimeromorphic model of the fibration. Another crucial example is given by what the author calls the core fibration: an orbifold is said to be of general type if the canonical divisor \(K_X+\Delta\) is big. A compact Kähler manifold \(Y\) is special if it does not admit any (meromorphic) fibration such that the orbifold base is of general type. The author proved that every compact Kähler manifold \(Y\) admits a unique almost holomorphic fibration \(Y \dashrightarrow X\) such that the base \((X, \Delta)\) is of orbifold general type and the general fibre \(F\) is special. This core fibration is a significant refinement of classical fibrations like the Iitaka fibration which typically has not the property that its base is of general type (in the standard sense).
In the paper under review the author puts his theory on a larger basis by discussing thoroughly the category of geometric orbifolds, the most important points being the appropriate definition of orbifold morphisms and the core fibration in the orbifold setting. He also introduces various notions of rational connectedness by orbifold curves, a very challenging topic with many problems that are open even for surfaces. The final section covers the conjectural relation of special orbifolds with properties from hyperbolic and arithmetic geometry and surveys some of the progress made since the appearance of the first paper. The numerous technical additions and improvements made in this paper should be very helpful for any mathematician interested in this ambitious research program.

MSC:

14J40 \(n\)-folds (\(n>4\))
14E30 Minimal model program (Mori theory, extremal rays)
14C05 Parametrization (Chow and Hilbert schemes)
14E05 Rational and birational maps
14E22 Ramification problems in algebraic geometry
14G05 Rational points
14H30 Coverings of curves, fundamental group
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
32J27 Compact Kähler manifolds: generalizations, classification
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
11G05 Elliptic curves over global fields

Citations:

Zbl 1062.14014

References:

[1] Lieberman, Lecture Notes in Mathematics 670 pp 140– (1975)
[2] Miyaoka, Proc. Symp. Pure Math. 46 pp 245– (1987) · doi:10.1090/pspum/046.1/927960
[3] Campana, Annales Scient. Éc. Norm. Sup. 28 pp 307– (1993)
[4] Campana, Annales Scient. Éc. Norm. Sup. 25 pp 539– (1992)
[5] Campana, J. Diff. Geom. 33 pp 541– (1991)
[6] Kovàcs, J. Alg. Geom. 9 pp 169– (2000)
[7] DOI: 10.1070/IM1979v013n03ABEH002076 · Zbl 0439.14002 · doi:10.1070/IM1979v013n03ABEH002076
[8] Kovàcs, J. Alg. Geom. 5 pp 369– (1996)
[9] Kollár, J. Alg. Geom. 1 pp 429– (1992)
[10] DOI: 10.1006/jnth.1995.1105 · Zbl 0840.11027 · doi:10.1006/jnth.1995.1105
[11] DOI: 10.1007/BF01244307 · Zbl 0819.14006 · doi:10.1007/BF01244307
[12] Campana, Bull. Soc. Math. France 122 pp 255– (1994)
[13] Barlet, Lecture Notes in Mathematics 482 pp 1– (1975)
[14] Keel, Memoirs of the American Mathematical Society 669 (1999)
[15] Kebekus, Invent. Math.
[16] DOI: 10.1353/ajm.1998.0038 · Zbl 0919.14003 · doi:10.1353/ajm.1998.0038
[17] Kawamata, Compositio Math. 43 pp 253– (1981)
[18] DOI: 10.1007/s00222-005-0458-8 · Zbl 1095.14049 · doi:10.1007/s00222-005-0458-8
[19] DOI: 10.1090/S0894-0347-02-00402-2 · Zbl 1092.14063 · doi:10.1090/S0894-0347-02-00402-2
[20] DOI: 10.2969/jmsj/03040779 · Zbl 0393.14006 · doi:10.2969/jmsj/03040779
[21] DOI: 10.1007/978-3-642-56202-0_16 · doi:10.1007/978-3-642-56202-0_16
[22] Deligne, Lecture Notes in Mathematics 842 pp 1– (1981)
[23] Viehweg, Adv. Stud. Pure Math. 1 pp 329– (1983)
[24] Deligne, Publ. Math. IHES 40 pp 5– (1972) · Zbl 0219.14007 · doi:10.1007/BF02684692
[25] Ueno, Lecture Notes in Mathematics 439 (1975)
[26] DOI: 10.1112/blms/27.6.513 · Zbl 0838.11023 · doi:10.1112/blms/27.6.513
[27] Takayama, J. Alg. Geom. 9 pp 403– (2000)
[28] DOI: 10.1007/s00229-008-0215-6 · Zbl 1163.14020 · doi:10.1007/s00229-008-0215-6
[29] DOI: 10.5802/aif.2259 · Zbl 1122.32013 · doi:10.5802/aif.2259
[30] DOI: 10.1007/978-3-642-56202-0_15 · doi:10.1007/978-3-642-56202-0_15
[31] Campana, Manuscr. Math.
[32] Shepherd-Barron, Astérisque 211 pp 103– (1992)
[33] DOI: 10.1007/BF01418950 · Zbl 0276.32012 · doi:10.1007/BF01418950
[34] DOI: 10.1112/S0010437X06002685 · Zbl 1120.32013 · doi:10.1112/S0010437X06002685
[35] Raynaud, Compositio Math. 24 pp 11– (1972)
[36] DOI: 10.1007/s00229-005-0570-5 · Zbl 1129.14051 · doi:10.1007/s00229-005-0570-5
[37] Păun, J. Diff. Geom.
[38] DOI: 10.5802/aif.2027 · Zbl 1062.14014 · doi:10.5802/aif.2027
[39] Namba, Pitman Research Notes in Mathematics 161 (1987)
[40] DOI: 10.2307/1971387 · Zbl 0606.14030 · doi:10.2307/1971387
[41] Campana, Contemp. Math. 241 pp 85– (1999) · doi:10.1090/conm/241/03629
[42] DOI: 10.1090/S0273-0979-1986-15426-1 · Zbl 0602.14019 · doi:10.1090/S0273-0979-1986-15426-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.