×

Interleaving logic and counting. (English) Zbl 07808884

Summary: Reasoning with quantifier expressions in natural language combines logical and arithmetical features, transcending strict divides between qualitative and quantitative. Our topic is this cooperation of styles as it occurs in common linguistic usage and its extension into the broader practice of natural language plus ‘grassroots mathematics’.
We begin with a brief review of \(\mathsf{FO}(\#)\), first-order logic with counting operators and cardinality comparisons. This system is known to be of very high complexity, and drowns out finer aspects of the combination of logic and counting. We therefore move to a small fragment that can represent numerical syllogisms and basic reasoning about comparative size: monadic first-order logic with counting, \(\mathsf{MFO}(\#)\). We provide normal forms that allow for axiomatization, determine which arithmetical notions can be defined on finite and on infinite models, and conversely, we discuss which logical notions can be defined out of purely arithmetical ones, and what sort of (non-)classical logics can be induced.
Next, we investigate a series of strengthenings of \(\mathsf{MFO}(\#)\), again using normal form methods. The monadic second-order version is close, in a precise sense, to additive Presburger Arithmetic, while versions with the natural device of tuple counting take us to Diophantine equations, making the logic undecidable. We also define a system \(\mathsf{ML}(\#)\) that combines basic modal logic over binary accessibility relations with counting, needed to formulate ubiquitous reasoning patterns such as the Pigeonhole Principle. We prove decidability of \(\mathsf{ML}(\#)\), and provide a new kind of bisimulation matching the expressive power of the language.
As a complement to the fragment approach pursued here, we also discuss two other ways of lowering the complexity of \(\mathsf{FO}(\#)\) by changing the semantics of counting in natural ways. A first approach replaces cardinalities by abstract but well-motivated values of ‘mass’ or other mereological aggregating notions. A second approach keeps the cardinalities but generalizes the meaning of counting to work in models that allow dependencies between variables.
Finally, we return to our starting point in natural language, confronting the architecture of our formal systems with linguistic quantifier vocabulary and syntax, as well as with natural reasoning modules such as the monotonicity calculus. In addition to these encounters with formal semantics, we discuss the role of counting in semantic evaluation procedures for quantifier expressions and determine, for instance, which binary quantifiers are computable by finite ‘semantic automata’. We conclude with some general thoughts on yet further entanglements of logic and counting in formal systems, on rethinking the qualitative/quantitative divide, and on connecting our analysis to empirical findings in cognitive science.

MSC:

03A05 Philosophical and critical aspects of logic and foundations
03B45 Modal logic (including the logic of norms)
03B65 Logic of natural languages
03B70 Logic in computer science
Full Text: DOI

References:

[1] Ackermann, W., Solvable Cases of the Decision Problem, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1954. · Zbl 0056.24505
[2] Antonelli, G. A., Numerical abstraction via the Frege quantifier. Notre Dame Journal of Formal Logic, vol. 51 (2010), no. 2, pp. 161-179. · Zbl 1205.03055
[3] Baader, F. and De Bortoli, F., On the expressive power of description logics with cardinality constraints on finite and infinite sets., Frontiers of Combining Systems (Herzig, A. and Popescu, A., editors), Springer, Cham, 2019, pp. 203-219. · Zbl 1435.68307
[4] Bacchus, F., Representing and Reasoning with Probabilistic Knowledge, MIT Press, Cambridge, 1990.
[5] Baltag, A. and Van Benthem, J., A simple logic of functional dependence. Journal of Philosophical Logic, vol. 50 (2021), pp. 939-1005. · Zbl 1534.03027
[6] Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., and Silva, J. P., The logical expressiveness of graph neural networks, Proceedings of the International Conference on Learning Representations (ICLR), 2020.
[7] Barner, D., Chow, K., and Yang, S.-J., Finding one’s meaning: A test of the relation between quantifiers and integers in language development. Cognitive Psychology, vol. 58 (2009), no. 2, pp. 195-219.
[8] Barwise, J. and Cooper, R., Generalized quantifiers and natural language. Linguistics and Philosophy, vol. 4 (1981), no. 2, pp. 159-219. · Zbl 0473.03033
[9] Barwise, J. and Feferman, S., Model-Theoretic Logics, Association for Symbolic Logic, 1985. · Zbl 0587.03001
[10] Bednarczyk, B., Demri, S., Fervari, R., and Mansutti, A., Modal logics with composition on finite forests: Expressivity and complexity, Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Association for Computing Machinery, New York, 2020, pp. 167-180. · Zbl 1498.03049
[11] Van Benthem, J., Essays in Logical Semantics, Reidel, Dordrecht, 1986. · Zbl 0619.03021
[12] Van Benthem, J., Language in Action: Categories, Lambdas, and Dynamic Logic, Studies in Logic, vol. 130, Elsevier, Amsterdam, 1991. · Zbl 0717.03001
[13] Van Benthem, J., Program constructions that are safe for bisimulation. Studia Logica, vol. 60 (1998), pp. 311-330. · Zbl 0958.68104
[14] Van Benthem, J., Guards, bounds, and generalized semantics. Journal of Logic, Language, and Information, vol. 14 (2005), no. 3, pp. 263-279. · Zbl 1080.03003
[15] Van Benthem, J. and Liu, F., New logical perspectives on monotonicity, Monotonicity in Logic and Language (Deng, D., Liu, F., Liu, M., and Westerståhl, D., editors), Springer, 2020.
[16] Van Benthem, J., Mierzewski, K., and Zaffora Blando, F., The modal logic of stepwise removal. The Review of Symbolic Logic, vol. 15 (2022), no. 1, pp. 36-63. · Zbl 1529.03156
[17] Blackburn, P., De Rijke, M., and Venema, Y., Modal Logic, Cambridge University Press, New York, 2001. · Zbl 0988.03006
[18] Borosh, I. and Treybig, L. B., Bounds on positive integral solutions of linear Diophantine equations. Proceedings of the American Mathematical Society, vol. 55 (1976), no. 2, pp. 299-304. · Zbl 0291.10014
[19] Brasoveanu, A., Sentence-internal different as quantifier-internal anaphora. Linguistics and Philosophy. 34(2011), 93-168.
[20] Bumford, D., Incremental quantification and the dynamics of pair-list phenomena. Semantics and Pragmatics, vol. 8 (2015), no. 9, pp. 1-70.
[21] Burgess, J. P., Axiomatizing the logic of comparative probability. Notre Dame Journal of Formal Logic, vol. 51 (2010), no. 1, pp. 119-126. · Zbl 1193.03044
[22] Cai, J.-Y., Fürer, M., and Immerman, N., An optimal lower bound on the number of variables for graph identification. Combinatorica, vol. 12 (1992), pp. 389-410. · Zbl 0785.68043
[23] Carey, S., The Origin of Concepts, Oxford University Press, Oxford, 2009.
[24] Carreiro, F., Facchini, A., Venema, Y., and Zanasi, F., Model theory of monadic predicate logic with the infinity quantifier. Archive for Mathematical Logic, vol. 61 (2022), pp. 465-502. · Zbl 07541620
[25] Clarke, S. and Beck, J., The number sense represents (rational) numbers. Behavioral and Brain Sciences, vol. 44 (2021), p. e178.
[26] Cook, S. A. and Reckhow, R. A., The relative efficiency of propositional proof systems. Journal of Symbolic Logic, vol. 44 (1979), no. 1, pp. 36-50. · Zbl 0408.03044
[27] Corcoran, J., Frank, W., and Maloney, M., String theory. The Journal of Symbolic Logic, vol. 39 (1974), no. 4, pp. 625-637. · Zbl 0298.02011
[28] Van Deemter, K., Generalized quantifiers: Finite versus infinite, Generalized Quantifiers in Natural Language (Van Benthem, J. and Ter Meulen, A., editors), Foris, Dordrecht, 1984, pp. 145-160.
[29] Dehaene, S., The Number Sense, Oxford University Press, Oxford, 2011.
[30] Demri, S. and Lugiez, D., Complexity of modal logics with Presburger constraints. Journal of Applied Logic, vol. 8 (2010), no. 3, pp. 233-252. · Zbl 1220.03008
[31] Denison, S. and Xu, F., The origins of probabilistic inference in human infants. Cognition, vol. 130 (2014), no. 3, pp. 335-347.
[32] Ding, Y., Harrison-Trainor, M., and Holliday, W. H., The logic of comparative cardinality. The Journal of Symbolic Logic, vol. 83 (2020), no. 3, pp. 972-1005. · Zbl 1485.03064
[33] Ding, Y., Holliday, W. H., and Icard, T. F., Regularity for relative likelihood, Peking University, University of California, Berkeley, and Stanford University, manuscript, 2021.
[34] Ehrenfeucht, A., Haussler, D., and Rozenberg, G., On regularity of context-free languages. Theoretical Computer Science, vol. 27 (1983), no. 3, pp. 311-332. · Zbl 0553.68044
[35] Eilenberg, S. and Schützenberger, M.-P., Rational sets in commutative monoids. Journal of Algebra, vol. 13 (1969), no. 2, pp. 173-191. · Zbl 0206.02703
[36] Endrullis, J. and Moss, L. S., Syllogistic logic with “most”. Mathematical Structures in Computer Science, vol. 29 (2019), no. 6, pp. 763-782. · Zbl 1456.03021
[37] Fagin, R., Halpern, J. Y., and Megiddo, N., A logic for reasoning about probabilities. Information and Computation, vol. 87 (1990), pp. 78-128. · Zbl 0811.03014
[38] Feferman, S. and Vaught, R., The first-order properties of products of algebraic systems. Fundamenta Mathematicae, vol. 47 (1959), pp. 57-103. · Zbl 0088.24803
[39] Feigenson, L., Dehaene, S., and Spelke, E., Core systems of number. Trends in Cognitive Sciences, vol. 8 (2003), no. 7, pp. 307-314.
[40] Fine, K., Propositional quantifiers in modal logic. Theoria, vol. 36 (1970), pp. 336-346. · Zbl 0302.02005
[41] Fine, K., In so many possible worlds. Notre Dame Journal of Formal Logic, vol. 13 (1972), no. 4, 516-520. · Zbl 0205.30306
[42] Fu, X. and Zhao, Z., Modal logic with counting: Definability, semilinear sets and correspondence theory, unpublished manuscript, China University of Political Science and Law, Beijing and School of Mathematics and Statistics, Taishan University, 2023.
[43] Gärdenfors, P., Qualitative probability as an intensional logic. Journal of Philosophical Logic, vol. 4 (1975), no. 2, pp. 171-185. · Zbl 0317.02030
[44] Ginsburg, S. and Spanier, E. H., Semigroups, Presburger formulas, and languages. Pacific Journal of Mathematics, vol. 16 (1966), no. 2, pp. 285-296. · Zbl 0143.01602
[45] Grädel, E., Otto, M., and Rosen, E., Two-variable logic with counting is decidable, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS ‘97), IEEE Computer Society, Warsaw, 1997, pp. 306-317.
[46] Grädel, E., Otto, M., and Rosen, E., Undecidability results on two-variable logics. Archive for Mathematical Logic, vol. 38 (1999), pp. 313-353. · Zbl 0927.03015
[47] Graf, T., A subregular bound on the complexity of lexical quantifiers, Proceedings of the 22nd Amsterdam Colloquium (Schlöder, J. J., Mchugh, D., and Roelofsen, F., editors), 2019, pp. 455-464.
[48] Grumbach, S. and Tollu, C., On the expressive power of counting. Theoretical Computer Science, vol. 149 (1995), pp. 67-99. · Zbl 0874.68091
[49] Grzegorczyk, A., Undecidability without arithmetization. Studia Logica, vol. 79 (2005), pp. 163-230. · Zbl 1080.03004
[50] Hale, B. and Wright, C., The Reason’s Proper Study: Essays towards a Neo-Fregean Philosophy of Mathematics, Oxford University Press, Oxford, 2001. · Zbl 1005.03006
[51] Hall, P., On representatives of subsets. Journal of the London Mathematical Society, vol. 10 (1935), no. 1, pp. 26-30. · JFM 61.0067.01
[52] Halpern, J. Y., An analysis of first-order logics of probability. Artificial Intelligence, vol. 46 (1990), pp. 311-350. · Zbl 0723.03007
[53] Harel, D., Recurring dominoes: Making the highly undecidable highly understandable. Annals of Discrete Mathematics, vol. 24 (1985), pp. 51-72. · Zbl 0531.68003
[54] Harrison-Trainor, M., Holliday, W. H., and Icard, T. F., Inferring probability comparisons. Mathematical Social Sciences, vol. 91 (2018), pp. 61-70. · Zbl 1396.91083
[55] Hartogs, F., Über das Problem der Wohlordnung. Mathematische Annalen, 76 (1915), 438-443. · JFM 45.0125.01
[56] Herre, H., Krynicki, M., Pinus, A., and Väänänen, J., The Härtig quantifier: A survey. The Journal of Symbolic Logic, vol. 56 (1991), no. 4, 1153-1183. · Zbl 0737.03013
[57] Hilbert, D., On the foundations of logic and arithmetic. The Monist, vol. 15 (1905), no. 3, pp. 338-352. · JFM 36.0094.08
[58] Van Der Hoek, W. and Derijke, M., Generalized quantifier and modal logic. Journal of Logic, Language, and Information, vol. 2 (1993), pp. 19-58. · Zbl 0797.03014
[59] Van Der Hoek, W., Qualitative modalities. International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems, vol. 4 (1996), no. 1, pp. 45-59. · Zbl 1232.03009
[60] Hoeksema, J., Plurality and conjunction, Studies in Model-Theoretic Semantics (Ter Meulen, A., editor), Foris, Dordrecht, 1983, pp. 63-83.
[61] Hoffmann, S., Commutative regular languages—Properties and state complexity, Algebraic Informatics (Ćirić, M., Droste, M., and Pin, J.-É., editors), Springer, 2019, pp. 151-163. · Zbl 1434.68258
[62] Holliday, W. H. and Icard, T. F., Axiomatization in the meaning sciences, The Science of Meaning (Ball, D., and Rabern, B., editors), Oxford University Press, Oxford, 2018.
[63] Ibeling, D., Icard, T., Mierzewski, K., and Mossé, M., Probing the quantitative-qualitative divide in probabilistic reasoning. Annals of Pure and Applied Logic (2023), p. 103339, forthcoming.
[64] Icard, T. F. and Moss, L. S., Recent progress on monotonicity. Linguistic Issues in Language Technology, vol. 9 (2014), no. 7, 167-194.
[65] Icard, T. F., Moss, L. S., and Tune, W., A monotonicity calculus and its completeness, Proceedings of the 15th Meeting on the Mathematics of Language (Kanazawa, M., De Groote, P., and Sadrzadeh, M., editors), Association for Computational Linguistics, London, 2017, pp. 75-87. · Zbl 1376.03030
[66] Kanazawa, M., Monadic quantifiers recognized by deterministic pushdown automata, Proceedings of the 19th Amsterdam Colloquium (Aloni, M., Franke, M., and Roelofsen, F., editors), 2013, pp. 139-146.
[67] Karp, R. M., Reducibility among combinatorial problems, Complexity of Computer Computations (Miller, R. E., Thatcher, J. W., and Bohlinger, J. D., editors), Springer, Boston, 1972, pp. 85-103. · Zbl 1467.68065
[68] Keenan, E. and Paperno, D., Overview, Handbook of Quantifiers in Natural Language, Studies in Linguistics and Philosophy, vol. 90, Springer, 2012, pp. 941-950.
[69] Kieroński, E., Pratt-Hartmann, I., and Tendera, L., Two-variable logics with counting and semantic constraints. ACM SIGLOG News, vol. 5 (2018), no. 3, pp. 22-43.
[70] Kirschhock, M. E., Ditz, H. M., and Nieder, A., Behavioral and neuronal representation of numerosity zero in the crow. Journal of Neuroscience, vol. 41 (2021), no. 22, pp. 4889-4896.
[71] Kisby, C., Blanco, S. A., Kruckman, A., and Moss, L. S., Logics for sizes with union or intersection. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, no. 3, pp. 2870-2876.
[72] Knowlton, T., Hunter, T., Odic, D., Wellwood, A., Halberda, J., Pietroski, P., and Lidz, J., Linguistic meanings as cognitive instructions. Annals of the New York Academy of Sciences, vol. 1500 (2021a), no. 1, pp. 134-144.
[73] Knowlton, T., Pietroski, P., Halberda, J., and Lidz, J., The mental representation of universal quantifiers. Linguistics and Philosophy, vol. 45 (2021b), pp. 911-941.
[74] Kraft, C. H., Pratt, J. W., and Seidenberg, A., Intuitive probability on finite sets. The Annals of Mathematical Statistics, vol. 30 (1959), no. 2, pp. 408-419. · Zbl 0173.19606
[75] Krajíček, J., Proof Complexity, Cambridge University Press, Cambridge, 2019. · Zbl 1532.03002
[76] Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A., Foundations of Measurement, vol. 1, Academic Press, New York, 1971. · Zbl 0232.02040
[77] Kuske, D. and Schweikardt, N., First-order logic with counting: At least, weak hanf normal forms always exist and can be computed!, Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE, 2017, pp. 1-12. · Zbl 1452.03087
[78] Lai, T., Endrullis, J., and Moss, L. S., Majority digraphs. Proceedings of the American Mathematical Society, vol. 144 (2016), no. 9, pp. 3701-3715. · Zbl 1338.05102
[79] Leśniewski, S., O podstawach matematyki. Przegląd Filozoficzny, vol. 30 (1927), pp. 164-206.
[80] Lewis, H. R., Complexity results for classes of quantificational formulas. Journal of Computer and System Sciences, vol. 23 (1980), no. 3, pp. 317-353. · Zbl 0471.03034
[81] Lidz, J., Pietroski, P., Halberda, J., and Hunter, T., Interface transparency and the psychosemantics of most. Natural Language Semantics, vol. 19 (2011), pp. 227-256.
[82] Lindström, P., First order predicate logic with generalized quantifiers. Theoria, vol. 32 (1966), no. 3, pp. 186-195. · Zbl 1230.03072
[83] Link, G., Algebraic Semantics in Language and Philosophy, Cambridge University Press, Cambridge, 1998. · Zbl 0923.03010
[84] Lipshitz, L., The Diophantine problem for addition and divisibility. Transactions of the American Mathematical Society, vol. 235 (1978), pp. 271-283. · Zbl 0374.02025
[85] Marx, M. and Venema, Y., Multi-Dimensional Modal Logic, Springer, Dordrecht, 1997. · Zbl 0942.03029
[86] Mayer, T., An investigation of the negationless fragment of the Rescher-Härtig quantifier. Bachelor’s thesis in Mathematics, Stanford University, 2023.
[87] Mercier, H., Politzer, G., and Sperber, D., What causes failure to apply the pigeonhole principle in simple reasoning problems?Thinking & Reasoning, vol. 23 (2017), no. 2, pp. 184-189.
[88] Moreno, L. E. and Waldegg, G., The conceptual evolution of actual mathematical infinity. Educational Studies in Mathematics, vol. 22 (1991), no. 3, pp. 211-231.
[89] Mortimer, M., On languages with two variables. Mathematical Logic Quarterly, vol. 21 (1975), no. 1, pp. 135-140. · Zbl 0343.02009
[90] Moss, L. S., Natural logic, Handbook of Contemporary Semantic Theory, second ed., Wiley-Blackwell, Oxford, 2015, pp. 646-681.
[91] Moss, L. S., Syllogistic logic with cardinality comparisons, J. Michael Dunn on Information Based Logics (Bimbó, K., editor), Springer, Cham, 2016, pp. 391-415. · Zbl 1439.03070
[92] Moss, L. S. and Topal, S., Syllogistic logic with cardinality comparisons, on infinite sets. The Review of Symbolic Logic, vol. 13 (2020), no. 1, pp. 1-22. · Zbl 1455.03039
[93] Mossé, M., Ibeling, D., and Icard, T., Is causal reasoning harder than probabilistic reasoning?The Review of Symbolic Logic (2022), pp. 1-26, forthcoming.
[94] Mostowski, A. and Tarski, A., Arithmetical classes and types of well-ordered systems. Bulletin of the American Mathematical Society, vol. 55 (1949), p. 65.
[95] Mostowski, M., Computational semantics for monadic quantifiers. Journal of Applied Non-Classical Logics, vol. 8 (1998), pp. 107-121. · Zbl 0920.03044
[96] Németi, I., Fine-structure analysis of first-order logic, Arrow Logic and Multidimensional Logic (Marx, M., Masuch, M., and Pólos, L., editors), CSLI Publications, Stanford, 1996, pp. 221-247. · Zbl 0879.03004
[97] Oppen, D. C., A \({2}^{2^{2^{pn}}}\) upper bound on the complexity of Presburger Arithmetic. Journal of Computer and System Sciences, vol. 16 (1978), no. 3, pp. 323-332. · Zbl 0381.03021
[98] Otto, M., Bounded Variable Logics and Counting, Springer, New York, 1997. · Zbl 0869.03018
[99] Parikh, R., On context-free languages. Journal of the ACM, vol. 13 (1966), no. 4, pp. 570-581. · Zbl 0154.25801
[100] Peters, S. and Westerståhl, D., Quantifiers in Language and Logic, Oxford University Press, Oxford, 2006.
[101] Piaget, J. and Garcia, R., Psychogenèse et Histoire des Sciences, Flammarion, Paris, 1983.
[102] Pietroski, P., Lidz, J., Hunter, T., and Halberda, J., The meaning of “most”: Semantics, numerosity and psychology. Mind & Language, vol. 24 (2009), no. 5, pp. 554-585.
[103] Pratt-Hartmann, I., Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information, vol. 14 (2005), no. 3, pp. 369-395. · Zbl 1082.03007
[104] Pratt-Hartmann, I., On the computational complexity of the numerically definite syllogistic and related logics, this Journal, vol. 14 (2008), no. 1, pp. 1-28. · Zbl 1166.03011
[105] Pratt-Hartmann, I., No syllogisms for the numerical syllogistic, Languages: From Formal to Natural, Lecture Notes in Computer Science, vol. 5533, Springer, Berlin-Heidelberg, 2009, pp. 129-203.
[106] Putnam, H., Trial and error predicates and the solution to a problem of Mostowski. The Journal of Symbolic Logic, vol. 30 (1965), no. 1, pp. 49-57. · Zbl 0193.30102
[107] Quine, W. V., Concatenation as a basis for arithmetic. The Journal of Symbolic Logic, vol. 11 (1946), no. 4, pp. 105-114. · Zbl 0063.06362
[108] Reichenbach, H., The Direction of Time, University of California Press, Berkeley, 1956.
[109] Rescher, N., Plurality quantification. The Journal of Symbolic Logic, vol. 27 (1962), pp. 373-374.
[110] Restall, G., An Introduction to Substructural Logics, Routledge, London and New York, 2000.
[111] Rett, J., The semantics of many, much, few, and little. Language and Linguistics Compass, vol. 12 (2018), no. 1, p. e12269.
[112] Robinson, J., Definability and decision problems in arithmetic. The Journal of Symbolic Logic, vol. 14 (1949), no. 2, pp. 98-114. · Zbl 0034.00801
[113] Rothstein, S., Counting and the mass/count distinction. Journal of Semantics, vol. 27 (2010), no. 3, pp. 343-397.
[114] Sánchez-Valencia, V., Studies on natural logic and categorial grammar. PhD thesis, Universiteit van Amsterdam, 1991.
[115] Schrijver, A., Theory of Linear and Integer Programming, Wiley, Chichester, 1998. · Zbl 0970.90052
[116] Schweikardt, N., Arithmetic, first-order logic, and counting quantifiers. ACM Transactions on Compututational Logic, vol. 6 (2005), no. 3, pp. 634-671. · Zbl 1407.03050
[117] Scott, D., Logic with denumerably long formulas and finite strings of quantifiers, The Theory of Models (Addition, J., Henkin, L., and Tarski, A., editors), North-Holland, Amsterdam, 1965, pp. 329-341. · Zbl 0166.26003
[118] Seidenberg, A., A simple proof of a theorem of Erdős and Szekeres. Journal of the London Mathematical Society, vol. s1-34 (1959), no. 3, p. 352. · Zbl 0085.15003
[119] Skølem, T., Diophantische Gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1938. · Zbl 0018.29302
[120] Slomson, A., The monadic fragment of predicate calculus with the Chang quantifier and equality, Proceedings of the Summer School in Logic Leeds, 1967 (Löb, M. H., editor), Springer, Berlin-Heidelberg, 1968, pp. 279-301. · Zbl 0195.30201
[121] Steinert-Threlkeld, S. and Icard, T. F., Iterating semantic automata. Linguistics and Philosophy, vol. 36 (2013), no. 2, pp. 151-173.
[122] Steinhorn, C., Borel structures for first-order and extended logics, Harvey Friedman’s Research on the Foundations of Mathematics (Harrington, L., Morley, M., Svêdrov, A., and Simpson, S., editors), Studies in Logic and the Foundations of Mathematics, vol. 117, Elsevier, 1985, pp. 161-178. · Zbl 0588.03001
[123] Sun, Z. and Liu, F., The inference pattern Mou in Mohist logic—A montonicity reasoning view. Roczniki Filozoficzne, vol. 68 (2020), pp. 257-270.
[124] Szymanik, J., Quantifiers and Cognition: Logical and Computational Perspectives, Springer, Berlin, 2016. · Zbl 1432.03003
[125] Tarski, A., Mostowski, A., and Robinson, R. M., Undecidable Theories, North-Holland, Amsterdam, 1953. · Zbl 0053.00401
[126] Väänänen, J., Remarks on generalized quantifiers and second-order logics, Set Theory and Hierarchy Theory, vol. 14, Prace Naukowe Instytutu Matematyki Politechniki Wroclawskiej, Wroclaw, 1977, pp. 117-123. · Zbl 0382.03010
[127] Visser, A., Growing commas: A study of sequentiality and concatenation. Notre Dame Journal of Formal Logic, vol. 50 (2009), no. 1, pp. 61-85. · Zbl 1190.03052
[128] Westerståhl, D., Logical constants in quantifier languages. Linguistics and Philosophy, vol. 8 (1985), pp. 387-413. · Zbl 0596.03022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.