×

On universal conformal envelopes for quadratic Lie conformal algebras. (English) Zbl 07808420

Summary: We prove that every quadratic Lie conformal algebra constructed on a special Gel’fand-Dorfman algebra embeds into the universal enveloping associative conformal algebra with a locality function bound \(N = 3\).

MSC:

17B35 Universal enveloping (super)algebras
17B63 Poisson algebras
17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] Alhussein, H., Kolesnikov, P.S. (2021). On the Hochschild cohomology of universal enveloping associative conformal algebras. J. Math. Phys. 62:121701. · Zbl 1502.16008
[2] Bakalov, B., D’Andrea, A., Kac, V.G. (2001). Theory of finite pseudoalgebrasAdv. Math. 162:1-140. DOI: . · Zbl 1001.16021
[3] Belavin, A.A., Polyakov, A.V., Zamolodchikov, A.B. (1984). Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. 241:333-380. DOI: . · Zbl 0661.17013
[4] Bergman, G. M. (1978). The diamond lemma for ring theory. Adv. Math. 29:178-218. DOI: . · Zbl 0326.16019
[5] Bokut, L.A. (1976). Imbeddings into simple associative algebras (Russian). Algebra i Logika15:117-142. · Zbl 0349.16007
[6] Bokut, L. A., Chen, Y.-Q., Zhang, Z. (2017). Gröbner-Shirshov bases method for Gelfand-Dorfman-Novikov algebras. J. Algebra Appl.16(1):1750001. DOI: . · Zbl 1405.17060
[7] Bokut, L. A., Fong, Y., Ke, W.-F. (2004). Composition-diamond lemma for associative conformal algebras. J. Algebra272:739-774. DOI: . · Zbl 1108.17006
[8] Borcherds, R. E. (1986). Vertex algebras, Kac-Moody algebras, and the monsterProc. Natl. Acad. Sci., USA 83:3068-3071. DOI: . · Zbl 0613.17012
[9] Boyallian, C., Kac, V. G., Liberati, J.-I. (2003). On the classification of subalgebras of \(\text{Cend}_N\) and \(\text{gc}_N\). J. Algebra260:32-63. · Zbl 1034.17018
[10] D’Andrea, A., Kac, V. G. (1998). Structure theory of finite conformal algebras. Sel. Math. New Ser. 4:377-418. DOI: . · Zbl 0918.17019
[11] Fattori, D., Kac, V. G. (2002). Classification of finite simple Lie conformal superalgebras. J. Algebra258:23-59. DOI: . · Zbl 1050.17023
[12] Fattori, D., Kac, V. G., Retakh, A. (2004). Structure theory of finite Lie conformal superalgebras. In: Doebner, H.-D., Hilgert, J., Dobrev, V. K., eds. Lie Theory and its Applications in Physics V.Singapore: World Scientific Publication, pp. 27-63. · Zbl 1229.17027
[13] Gelfand, I. M., Dorfman, I. Ya. (1979). Hamilton operators and associated algebraic structures. Funct. Anal. Appl. 13(4):13-30. · Zbl 0428.58009
[14] Hong, Y., Wu, Z. (2017). Simplicity of quadratic Lie conformal algebras. Commun. Algebra45(1):141-150. DOI: . · Zbl 1418.17058
[15] Kac, V. G. (1998). Vertex Algebras for Beginners, 2nd ed. University Lecture Series, Vol. 10. Providence, RI: AMS. · Zbl 0924.17023
[16] Kolesnikov, P. S. (2006). Associative conformal algebras with finite faithful representation. Adv. Math. 20:602-637. DOI: . · Zbl 1175.16018
[17] Kolesnikov, P. S. (2007). On the Wedderburn principal theorem in conformal algebras. J. Algebra Appl.6:119-134. DOI: . · Zbl 1153.16003
[18] Kolesnikov, P. S. (2011). On finite representations of conformal algebras. J. Algebra331:169-193. DOI: . · Zbl 1231.81047
[19] Kolesnikov, P. S. (2013). Graded associative conformal algebras of finite type. Algebras Represent. Theory16(6):1521-1539. · Zbl 1293.16036
[20] Kolesnikov, P. S. (2016). The Ado theorem for finite Lie conformal algebras with Levi decomposition. J. Algebra Appl.15:1650130. DOI: . · Zbl 1395.17068
[21] Kolesnikov, P. S. (2020). Gröbner-Shirshov bases for associative conformal algebras with arbitrary locality function. In: Shum, K. P., et al. (eds.) New Trends in Algebra and Combinatorics. Proceedings of the 3rd International Congress in Algebra and Combinatorics. World Scientific, pp. 255-267. · Zbl 1448.16050
[22] Kolesnikov, P. S. (2020). Universal enveloping Poisson conformal algebras. Int. J. Algebra Comput.30(5):1015-1034. DOI: . · Zbl 1495.17040
[23] Kolesnikov, P. S., Kozlov, R. A. (2019). On the Hochschild cohomologies of associative conformal algebras with a finite faithful representation. Commun. Math. Phys.369(1):351-370. DOI: . · Zbl 1473.17071
[24] Kolesnikov, P. S., Kozlov, R. A. (2022). Standard bases for the universal associative conformal envelopes of Kac-Moody conformal algebras. Algebras Represent. Theory25:847-867. DOI: . · Zbl 1510.17010
[25] Kolesnikov, P. S., Kozlov, R. A., Panasenko, A. S. (2021). Quadratic Lie conformal superalgebras related to Novikov superalgebras. J. Noncommut. Geom.15(4):1485-1500. DOI: . · Zbl 1487.17046
[26] Kolesnikov, P. S., Sartayev, B., Orazgaliev, A. (2019). Gelfand-Dorfman algebras, derived identities, and the Manin product of operads. J. Algebra539:260-284. DOI: . · Zbl 1448.17023
[27] Kozlov, R. A. (2019). Hochshild cohomology of the associative conformal algebra \(\text{Cend}_{1 , x} \). Algebra Logic58(1):36-47. · Zbl 1428.16011
[28] Newman, M. H. A. (1942). On theories with a combinatorial definition of “equivalence”. Ann. Math. 43:223-243. DOI: . · Zbl 0060.12501
[29] Ni, L., Chen, Y.-Q. (2017). A new composition-diamond lemma for associative conformal algebras. J. Algebra Appl.16:1-28. DOI: . · Zbl 1407.17034
[30] Retakh, A. (2001). Associative conformal algebras of linear growth. J. Algebra237:769-788. DOI: . · Zbl 1151.17312
[31] Roitman, M. (1999). On free conformal and vertex algebras. J. Algebra217:496-527. DOI: . · Zbl 0951.17013
[32] Roitman, M. (2000). Universal enveloping conformal algebras. Sel. Math. New Ser. 6:319-345. DOI: . · Zbl 1048.17017
[33] Xu, X. (2000). Quadratic conformal superalgebras. J. Algebra231:1-38. DOI: . · Zbl 1001.17024
[34] Xu, X. (2003). Gel’and-Dorfman bialgebras. Southeast Asian Bull. Math. 27:561-574. · Zbl 1160.17301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.