×

Theory of finite pseudoalgebras. (English) Zbl 1001.16021

The article is devoted to a thorough study of new algebraic structures appearing in contemporary physical theories (chiral fields, Poisson brackets, vertex algebras, conformal field theory) and we can present only poor information at this place.
The fundamental concepts are not simple. We begin with a pseudotensorial category \(\mathcal M\) which is a class of objects together with vector spaces \(\text{Lin}(\{L_i\}_{i\in I},M)\) equipped moreover with actions of the symmetric group \(S_I\) and the composition maps \[ \text{Lin}(\{L_i\}_{i\in I},M)\otimes\bigotimes_{i\in I}(\text{Lin}\{N_j\}_{j\in J},L_i)\to\text{Lin}(\{N_j\}_{j\in J},M) \] that satisfy the associativity, the existence of the unity \(\text{id}_{\mathcal M}\in\text{Lin}(\{M\},M)\) and equivariance with respect to \(S_I\). (Then, roughly saying, the pseudotensors equipped with polylinear maps take the common role of vector spaces in classical algebra in order to obtain the pseudoalgebras.) In more detail: A Lie algebra in the category \(\mathcal M\) is an object \(L\) equipped with \(\beta\in\text{Lin}(\{L,L\},L)\) satisfying the skew commutativity \(\beta=-\sigma_{12}\beta\) and the Jacobi identity \(\beta(\beta(\cdot,\cdot),\cdot)=\beta(\cdot,\beta(\cdot,\cdot))-\sigma_{12}\beta(\cdot,\beta(\cdot,\cdot))\), where \(\sigma_{12}=(12)\in S_2\). An associative algebra in \(\mathcal M\) is an object \(A\) and product \(\mu\in\text{Lin}(\{A,A\},A)\) satisfying the associativity \(\mu(\mu(\cdot,\cdot),\cdot)=\mu(\cdot,\mu(\cdot,\cdot))\). In particular let \(H\) be a cocommutative bialgebra. The authors introduce a certain special pseudotensorial category \({\mathcal M}^*(H)\) of left \(H\)-modules equipped with \(H\)-polylinear maps and then the Lie \(H\)-pseudoalgebra (\(H\)-pseudoalgebra) is defined as a Lie algebra (associative algebra, respectively) in the category \({\mathcal M}^*(H)\). (The latter two concepts can be seen equivalent with the so called conformal algebra if certain \(x\)-brackets \([a_xb]\) are introduced.)
The central result provides the classification of finite simple Lie pseudoalgebras over the Hopf algebra \(H=U(\delta)\), the universal enveloping algebra of a Lie algebra \(\delta\). This leads to the structural theory of semi-simple Lie pseudoalgebras. The generalized Lie theorem on solvable Lie pseudoalgebras and an analogue of the Cartan-Jacobson theorem hold true, unlike the Levi theorem. The cohomology of Lie pseudoalgebras describes the module extensions, Abelian pseudoalgebra extensions and pseudoalgebra deformations.

MSC:

16T10 Bialgebras
17B35 Universal enveloping (super)algebras
17B81 Applications of Lie (super)algebras to physics, etc.

References:

[1] Bakalov, B.; Kac, V. G.; Voronov, A. A., Cohomology of conformal algebras, Comm. Math. Phys., 200, 561-598 (1999) · Zbl 0959.17018
[2] A. Beilinson, and, V. Drinfeld, Chiral algebras, preprint.; A. Beilinson, and, V. Drinfeld, Chiral algebras, preprint. · Zbl 1138.17300
[3] Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, 241, 333-380 (1984) · Zbl 0661.17013
[4] Blattner, R. J., A theorem of Cartan and Guillemin, J. Differential Geom., 5, 295-305 (1970) · Zbl 0235.17010
[5] Blattner, R. J., Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc., 144, 457-474 (1969) · Zbl 0295.17002
[6] Borcherds, R. E., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. U.S.A., 83, 3068-3071 (1986) · Zbl 0613.17012
[7] Borcherds, R. E., Vertex algebras, Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996. Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996, Progr. Math., 160 (1998), Birkhäuser: Birkhäuser Boston, p. 35-77 · Zbl 0956.17019
[8] Cassidy, P. J., Differential algebraic Lie algebras, Trans. Amer. Math. Soc., 247, 247-273 (1979) · Zbl 0425.12022
[9] Chari, V.; Pressley, A., A Guide to Quantum Groups (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0839.17010
[10] Cheng, S.-J.; Kac, V. G., Conformal modules, Asian J. Math., 1, 181-193 (1997) · Zbl 1022.17018
[11] Cheng, S.-J.; Kac, V. G.; Wakimoto, M., Extensions of conformal modules, Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996. Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996, Progr. Math., 160 (1998), Birkhäuser: Birkhäuser Boston, p. 79-129 · Zbl 0937.17019
[12] D’Andrea, A.; Kac, V. G., Structure theory of finite conformal algebras, Selecta Math. (N.S.), 4, 377-418 (1998) · Zbl 0918.17019
[13] Dorfman, I., Dirac Structures and Integrability of Nonlinear Evolution Equations: Nonlinear Science: Theory and Applications (1993), Wiley: Wiley Chichester · Zbl 0717.58026
[14] V. G. Drinfeld, Quantum groups, in Proc. Intern. Congr. Math., Berkeley, 1986, pp. 798-820.; V. G. Drinfeld, Quantum groups, in Proc. Intern. Congr. Math., Berkeley, 1986, pp. 798-820. · Zbl 0667.16003
[15] Dubrovin, B. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Dokl. Akad. Nauk SSSR, 279, 294-297 (1984) · Zbl 0591.58012
[16] Dubrovin, B. A.; Novikov, S. P., Hydrodynamics of weakly deformed soliton lattices: Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk, 44, 29-98 (1989) · Zbl 0712.58032
[17] P. Etingof, and, O. Schiffmann, Lectures on the dynamical Yang-Baxter equations, preprint,; P. Etingof, and, O. Schiffmann, Lectures on the dynamical Yang-Baxter equations, preprint, · Zbl 1036.17013
[18] Felder, G., Conformal field theory and integrable systems associated to elliptic curves, Proceedings of the International Congress of Mathematicians (1995), Birkhäuser: Birkhäuser Basel, p. 1247-1255 · Zbl 0852.17014
[19] Fuchs, D. B., Cohomology of Infinite-Dimensional Lie Algebras (1986), Consultants BureauContemporary Soviet Mathematics: Consultants BureauContemporary Soviet Mathematics New York · Zbl 0667.17005
[20] Gelfand, I. M.; Dorfman, I. Ja., Hamiltonian operators and infinite-dimensional Lie algebras, Funktsional. Anal. i Prilozhen., 15, 23-40 (1981) · Zbl 0478.58013
[21] Golenishcheva-Kutuzova, M.; Kac, V. G., \(Γ\)-conformal algebras, J. Math. Phys., 39, 2290-2305 (1998) · Zbl 1031.81527
[22] Guillemin, V., A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geom., 2, 313-345 (1968) · Zbl 0183.26102
[23] Guillemin, V., Infinite-dimensional primitive Lie algebras, J. Differential Geom., 4, 257-282 (1970) · Zbl 0223.17007
[24] Guillemin, V.; Sternberg, S., An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc., 70, 16-47 (1964) · Zbl 0121.38801
[25] Kac, V. G., Infinite-Dimensional Lie Algebras (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0425.17009
[26] Kac, V. G., Vertex Algebras for Beginners. Vertex Algebras for Beginners, University Lecture Series, 10 (1996), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0861.17017
[27] Kac, V. G., The idea of locality, (Doebner, H.-D., Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras (1997), World Scientific: World Scientific Singapore), 16-32
[28] Kac, V. G., Formal distribution algebras and conformal algebras, Proc. XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane) (1999), Internat. Press: Internat. Press Cambridge, p. 80-97 · Zbl 1253.17002
[29] Kassel, C., Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, J. Pure Appl. Algebra, 34, 265-275 (1984) · Zbl 0549.17009
[30] Kirillov, A. A., Local Lie algebras, Uspekhi Mat. Nauk, 31, 57-76 (1976) · Zbl 0357.58003
[31] Kostrikin, I. A., Representations of height 1 of infinite-dimensional Lie algebras of the series \(K_n\), Uspekhi Mat. Nauk, 34, 229-230 (1979) · Zbl 0403.17007
[32] Lambek, J., Deductive systems and categories. II. Standard constructions and closed categories, Lecture Notes in Math. (1969), Springer-Verlag: Springer-Verlag Berlin, p. 76-122 · Zbl 0198.33701
[33] Mokhov, O. I., Poisson brackets of Dubrovin-Novikov type (DN-brackets), Funktsional. Anal. i Prilozhen., 22, 92-93 (1988) · Zbl 0671.58006
[34] Nichols, W.; Weisfeiler, B., Differential formal groups of J. F. Ritt, Amer. J. Math., 104, 943-1003 (1982) · Zbl 0552.14010
[35] Ritt, J. F., Associative differential operations, Ann. of Math. (2), 51, 756-765 (1950) · Zbl 0037.18501
[36] Ritt, J. F., Differential groups and formal Lie theory for an infinite number of parameters, Ann. of Math (2), 52, 708-726 (1950) · Zbl 0038.16801
[37] Ritt, J. F., Differential groups of order two, Ann. of Math. (2), 53, 491-519 (1951) · Zbl 0042.25801
[38] Ritt, J. F., Subgroups of differential groups, Ann. of Math. (2), 54, 110-146 (1951) · Zbl 0043.02905
[39] Rudakov, A. N., Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Izv. Akad. Nauk SSSR Ser. Mat., 38, 835-866 (1974) · Zbl 0322.17004
[40] Rudakov, A. N., Irreducible representations of infinite-dimensional Lie algebras of types \(S\) and \(H\), Izv. Akad. Nauk SSSR Ser. Mat., 39, 496-511 (1975) · Zbl 0345.17008
[41] Serre, J.-P., Lie Algebras and Lie Groups (1965), Benjamin: Benjamin Elmsford · Zbl 0132.27803
[42] Y. Soibelman, Meromorphic tensor categories, preprint,; Y. Soibelman, Meromorphic tensor categories, preprint, · Zbl 0999.17020
[43] Sweedler, M., Hopf Algebras (1969), BenjaminMath. Lecture Note Series: BenjaminMath. Lecture Note Series New York · Zbl 0194.32901
[44] X. Xu, Equivalence of conformal superalgebras to Hamiltonian superoperators, Algebra Colloq, in press.; X. Xu, Equivalence of conformal superalgebras to Hamiltonian superoperators, Algebra Colloq, in press. · Zbl 0995.17001
[45] Zelmanov, E. I., A class of local translation-invariant Lie algebras, Dokl. Akad. Nauk SSSR, 292, 1294-1297 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.