×

A space-time discontinuous Galerkin discretization for the linear transport equation. (English) Zbl 07801669

Summary: We consider a full-upwind DG approximation in space and time for the linear transport equation. Based on our results for linear symmetric Friedrichs systems we establish inf-sup stability and convergence in a mesh-dependent DG norm, and we construct an error indicator with respect to this norm. Numerical results of test problems with known solution demonstrate the efficiency of the a priori and a posteriori results as well for smooth and for non-smooth solutions. Then, we show that by introducing suitable degrees of freedom on the space-time element boundaries the corresponding hybrid formulation yields a reduction to a considerably smaller linear system.

MSC:

65-XX Numerical analysis
93-XX Systems theory; control
Full Text: DOI

References:

[1] Bansal, P.; Moiola, A.; Perugia, I.; Schwab, C., Space-time discontinuous Galerkin approximation of acoustic waves with point singularities. IMA J. Numer. Anal., 3, 2056-2109 (2021) · Zbl 07528299
[2] Bartels, S., Numerical Approximation of Partial Differential Equations, vol. 64 (2016), Springer · Zbl 1353.65089
[3] Broersen, D.; Dahmen, W.; Stevenson, R. P., On the stability of DPG formulations of transport equations. Math. Comput., 311, 1051-1082 (2018) · Zbl 1383.65102
[4] Bui-Thanh, T., From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. J. Comput. Phys., 114-146 (2015) · Zbl 1349.76183
[5] Corallo, D.; Dörfler, W.; Wieners, C., Space-time discontinuous Galerkin methods for weak solutions of hyperbolic linear symmetric Friedrichs systems. J. Sci. Comput., 27 (2023) · Zbl 07682802
[6] Dahmen, W.; Huang, C.; Schwab, C.; Welper, G., Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal., 5, 2420-2445 (2012) · Zbl 1260.65091
[7] Dahmen, W.; Stevenson, R. P., Adaptive strategies for transport equations. Comput. Methods Appl. Math., 3, 431-464 (2019) · Zbl 1420.65109
[8] Demkowicz, L.; Gopalakrishnan, J., A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation. Comput. Methods Appl. Mech. Eng., 23-24, 1558-1572 (2010) · Zbl 1231.76142
[9] Demkowicz, L.; Gopalakrishnan, J.; Nagaraj, S.; Sepúlveda, P., A spacetime DPG method for the Schrödinger equation. SIAM J. Numer. Anal., 4, 1740-1759 (2017) · Zbl 1369.65122
[10] Demkowicz, L. F.; Roberts, N. V.; Muñoz Matute, J., The DPG method for the convection-reaction problem, revisited. Comput. Methods Appl. Math., 1, 93-125 (2023) · Zbl 1512.35505
[11] Di Pietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69 (2011), Springer
[12] Di Pietro, D. A.; Ern, A.; Lemaire, S., A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods, 205-236 · Zbl 1357.65258
[13] Dörfler, W.; Findeisen, S.; Wieners, C., Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Comput. Methods Appl. Math., 3, 409-428 (2016) · Zbl 1360.65234
[14] Dörfler, W.; Hochbruck, M.; Köhler, J.; Rieder, A.; Schnaubelt, R.; Wieners, C., Wave phenomena
[15] Ern, A.; Guermond, J.-L., Finite Elements III: First-Order and Time-Dependent PDEs, vol. 74 (2021), Springer · Zbl 1457.65001
[16] Ernesti, J.; Wieners, C., Space-time discontinuous Petrov-Galerkin methods for linear wave equations in heterogeneous media. Comput. Methods Appl. Math., 3, 465-481 (2019) · Zbl 1420.65100
[17] Ernesti, J.; Wieners, C., A space-time DPG method for acoustic waves, 99-127
[18] Feireisl, E.; Lukáčová-Medviďová, M.; Mizerová, H., \( \mathcal{K} \)-convergence as a new tool in numerical analysis. IMA J. Numer. Anal., 4, 2227-2255 (2020) · Zbl 1465.65045
[19] Gopalakrishnan, J.; Qiu, W., An analysis of the practical DPG method. Math. Comput., 286, 537-552 (2014) · Zbl 1282.65154
[20] Gopalakrishnan, J.; Sepúlveda, P., A space-time DPG method for the wave equation in multiple dimensions, 117-140
[21] Li, J.; Demkowicz, L., An \(L^p\)-DPG method with application to 2D convection-diffusion problems. Comput. Methods Appl. Math., 3, 649-662 (2022) · Zbl 1492.65319
[22] Muñoz-Matute, J.; Demkowicz, L.; Roberts, N. V., Combining DPG in space with DPG time-marching scheme for the transient advection-reaction equation. Comput. Methods Appl. Mech. Eng. (2022) · Zbl 1507.65187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.