×

An \(L^p\)-DPG method with application to 2D convection-diffusion problems. (English) Zbl 1492.65319

Summary: This article summarizes the \(L^p\)-DPG method presented in our recent paper [Comput. Math. Appl. 95, 172–185 (2021; Zbl 1524.65833)], where only 1D convection-diffusion problems are solved. We apply the same computational techniques to 2D convection-diffusion problems and report additional numerical results herein. Furthermore, we propose an \(L^p\)-DPG method with variable \(p\) and illustrate it with numerical experiments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Citations:

Zbl 1524.65833
Full Text: DOI

References:

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University, Cambridge, 2004. · Zbl 1058.90049
[2] D. Breit, L. Diening and S. Schwarzacher, Finite element approximation of the p({\cdot})-Laplacian, SIAM J. Numer. Anal. 53 (2015), no. 1, 551-572. · Zbl 1312.65185
[3] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal. 52 (2014), no. 3, 1335-1353. · Zbl 1320.65171
[4] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl. 72 (2016), no. 3, 494-522. · Zbl 1359.65249
[5] J. Chan, J. A. Evans and W. Qiu, A dual Petrov-Galerkin finite element method for the convection-diffusion equation, Comput. Math. Appl. 68 (2014), no. 11, 1513-1529. · Zbl 1364.65192
[6] A. J. Chen and Y. Kallinderis, Adaptive hybrid (prismatic-tetrahedral) grids for incompressible flows, Internat. J. Numer. Methods Fluids 26 (1998), no. 9, 1085-1105. · Zbl 0912.76050
[7] L. Demkowicz, Various variational formulations and closed range theorem, ICES Report 15-03, The University of Texas at Austin, 2015.
[8] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differential Equations 27 (2011), no. 1, 70-105. · Zbl 1208.65164
[9] L. Demkowicz and J. Gopalakrishnan, Encyclopedia of Computational Mechanics, 2nd ed., Wiley, New York, 2018.
[10] L. Demkowicz and N. Heuer, Robust DPG method for convection-dominated diffusion problems, SIAM J. Numer. Anal. 51 (2013), no. 5, 2514-2537. · Zbl 1290.65088
[11] L. Demkowicz and P. Zanotti, Construction of DPG Fortin operators revisited, Comput. Math. Appl. 80 (2020), no. 11, 2261-2271. · Zbl 1458.65146
[12] H. Egger and J. Schöberl, A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA J. Numer. Anal. 30 (2010), no. 4, 1206-1234. · Zbl 1204.65133
[13] K. Eriksson and C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp. 60 (1993), no. 201, 167-188. · Zbl 0795.65074
[14] J. Gopalakrishnan and W. Qiu, An analysis of the practical DPG method, Math. Comp. 83 (2014), no. 286, 537-552. · Zbl 1282.65154
[15] P. Houston, I. Muga, S. Roggendorf and K. G. van der Zee, The convection-diffusion-reaction equation in non-Hilbert Sobolev spaces: A direct proof of the inf-sup condition and stability of Galerkin’s method, Comput. Methods Appl. Math. 19 (2019), no. 3, 503-522. · Zbl 1429.35070
[16] P. Houston, S. Roggendorf and K. G. van der Zee, Eliminating Gibbs phenomena: A non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation, Comput. Math. Appl. 80 (2020), no. 5, 851-873. · Zbl 1447.65146
[17] P. Houston, S. Roggendorf and K. G. van der Zee, Gibbs phenomena for L^q-best approximation in finite element spaces, ESAIM Math. Model. Numer. Anal. 56 (2022), no. 1, 177-211. · Zbl 1483.65188
[18] J. Li and L. Demkowicz, An Lp-DPG method for the convection-diffusion problem, Comput. Math. Appl. 95 (2021), 172-185. · Zbl 1524.65833
[19] I. Muga and K. G. van der Zee, Discretization of linear problems in Banach spaces: residual minimization, nonlinear Petrov-Galerkin, and monotone mixed methods, SIAM J. Numer. Anal. 58 (2020), no. 6, 3406-3426. · Zbl 1457.65024
[20] J. T. Oden and L. F. Demkowicz, Applied Functional Analysis, 3rd ed., CRC Press, Boca Raton, 2018. · Zbl 1379.46001
[21] S. Roggendorf, Eliminating the Gibbs phenomenon: The non-linear Petrov-Galerkin method for the convection-diffusion-reaction equation, PhD thesis, University of Nottingham, 2019.
[22] J. Zitelli, I. Muga, L. Demkowicz, J. Gopalakrishnan, D. Pardo and V. M. Calo, A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D, J. Comput. Phys. 230 (2011), no. 7, 2406-2432. · Zbl 1316.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.