×

Almost disjoint families under determinacy. (English) Zbl 07794560

Summary: For each cardinal \(\kappa \), let \(\mathcal{B}(\kappa)\) be the ideal of bounded subsets of \(\kappa\) and \(\mathcal{P}_\kappa(\kappa)\) be the ideal of subsets of \(\kappa\) of cardinality less than \(\kappa \). Under determinacy hypothesis, this paper will completely characterize for which cardinals \(\kappa\) there is a nontrivial maximal \(\mathcal{B}(\kappa)\) almost disjoint family. Also, the paper will completely characterize for which cardinals \(\kappa\) there is a nontrivial maximal \(\mathcal{P}_\kappa(\kappa)\) almost disjoint family when \(\kappa\) is not an uncountable cardinal of countable cofinality. More precisely, the following will be shown. Assuming \(\mathsf{AD}^+\), for all \(\kappa < \Theta \), there are no maximal \(\mathcal{B}(\kappa)\) almost disjoint families \(\mathcal{A}\) such that \(\neg(| \mathcal{A} | < \operatorname{cof}(\kappa))\). For all \(\kappa < \Theta \), if \(\operatorname{cof}(\kappa) > \omega \), then there are no maximal \(\mathcal{P}_\kappa(\kappa)\) almost disjoint families \(\mathcal{A}\) so that \(\neg(| \mathcal{A} | < \operatorname{cof}(\kappa))\). Assume \(\mathsf{AD}\) and \(V = L(\mathbb{R})\) (or more generally, \( \mathsf{AD}^+\) and \(V = L(\mathcal{P}(\mathbb{R}))\)). For any cardinal \(\kappa \), there is a maximal \(\mathcal{B}(\kappa)\) almost disjoint family \(\mathcal{A}\) so that \(\neg(| \mathcal{A} | < \operatorname{cof}(\kappa))\) if and only if \(\operatorname{cof}(\kappa) \geq \Theta \). For any cardinal \(\kappa\) with \(\operatorname{cof}(\kappa) > \omega \), there is a maximal \(\mathcal{P}_\kappa(\kappa)\) almost disjoint family if and only if \(\operatorname{cof}(\kappa) \geq \Theta\).

MSC:

03E05 Other combinatorial set theory
03E15 Descriptive set theory
03E60 Determinacy principles
Full Text: DOI

References:

[1] Caicedo, A. E.; Ketchersid, R., A Trichotomy Theorem in Natural Models of \(\mathsf{AD}^+\), Set Theory and Its Applications. Contemp. Math., 227-258 (2011), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, MR 2777751
[2] Chan, W., An introduction to combinatorics of determinacy, 21-75, MR 4132099 · Zbl 1496.03204
[3] Chan, W.; Jackson, S., \( \mathbf{L}(\mathbb{R})\) with determinacy satisfies the Suslin hypothesis. Adv. Math., 305-328 (2019), MR 3910797 · Zbl 1539.03143
[4] Chan, W.; Jackson, S.; Trang, N., The size of the class of countable sequences of ordinals. Trans. Am. Math. Soc., 3, 1725-1743 (2022), MR 4378077 · Zbl 07479583
[5] Erdős, P.; Hechler, S. H., On maximal almost-disjoint families over singular cardinals, 597-604, dedicated to P. Erdős on his 60th birthday, MR 0376354 · Zbl 0326.02050
[6] Jackson, S., Structural consequences of \(\mathsf{AD} \), 1753-1876, MR 2768700 · Zbl 1198.03056
[7] Jech, T., Set Theory. Springer Monographs in Mathematics (2003), Springer-Verlag: Springer-Verlag Berlin, MR 1940513 (2004g:03071) · Zbl 1007.03002
[8] Kechris, A. S., The axiom of determinacy implies dependent choices in \(L(\mathbb{R})\). J. Symb. Log., 1, 161-173 (1984), MR 736611 · Zbl 0584.03037
[9] Ketchersid, R.; Larson, P.; Zapletal, J., Ramsey ultrafilters and countable-to-one uniformization. Topol. Appl., 190-198 (2016), MR 3563079 · Zbl 1355.03037
[10] Koellner, P.; Woodin, W. H., Large cardinals from determinacy, 1951-2119, MR 2768702 · Zbl 1198.03072
[11] Kojman, M.; Kubiś, W.; Shelah, S., On two problems of Erdős and Hechler: new methods in singular madness. Proc. Am. Math. Soc., 11, 3357-3365 (2004), MR 2073313 · Zbl 1048.03037
[12] Martin, D. A.; Steel, J. R., The extent of scales in \(L(\mathbb{R})\), 86-96, MR 730590
[13] Mathias, A. R.D., Happy families. Ann. Math. Log., 1, 59-111 (1977), MR 491197 · Zbl 0369.02041
[14] Müller, S.; Lücke, P., \( \mathbf{\Sigma}_1\)-definability at higher cardinals: thin sets, almost disjoint families and long wellorders. Forum Math. Sigma, e103 (2023) · Zbl 07774866
[15] Neeman, I.; Norwood, Z., Happy and mad families in \(L(\mathbb{R})\). J. Symb. Log., 2, 572-597 (2018), MR 3835078 · Zbl 1522.03218
[16] Schrittesser, D.; Törnquist, A., The Ramsey property implies no mad families. Proc. Natl. Acad. Sci. USA, 38, 18883-18887 (2019), MR 4012549 · Zbl 1431.03063
[17] Steel, J.; Trang, N., \( \mathsf{AD}^+\), derived models, and \(\operatorname{\Sigma}_1\)-reflection
[18] Steel, J. R., Closure properties of pointclasses, 147-163, MR 611171 · Zbl 1242.03078
[19] Steel, J. R., Scales in \(L(\mathbf{R})\), 107-156, MR 730592
[20] Steel, J. R., \( \operatorname{HOD}^{L ( \mathbb{R} )}\) is a core model below Θ. Bull. Symb. Log., 1, 75-84 (1995), MR 1324625 · Zbl 0826.03022
[21] Trang, N., Supercompactness can be equiconsistent with measurability. Notre Dame J. Form. Log., 4, 593-618 (2021), MR 4350949 · Zbl 1529.03256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.