×

\(\mathsf{L}(\mathbb{R})\) with determinacy satisfies the Suslin hypothesis. (English) Zbl 1539.03143

Summary: The Suslin hypothesis states that there are no nonseparable complete dense linear orderings without endpoints which have the countable chain condition. \(\mathsf{ZF} + \mathsf{AD}^+ + \mathsf{V} = \mathsf{L}(\mathcal{P}(\mathbb{R}))\) proves the Suslin hypothesis. In particular, if \(L(\mathbb{R}) \vDash \mathsf{AD}\), then \(L(\mathbb{R})\) satisfies the Suslin hypothesis, which answers a question of M. Foreman [in: Logic, methodology and philosophy of science VIII. Proceedings of the eighth international congress of logic, methodology and philosophy of science, Moscow, August 17–22, 1987. Amsterdam etc.: North-Holland. 223–244 (1989; Zbl 0703.03031)].

MSC:

03E05 Other combinatorial set theory
03E35 Consistency and independence results
03E15 Descriptive set theory
03E45 Inner models, including constructibility, ordinal definability, and core models
03E60 Determinacy principles

Citations:

Zbl 0703.03031

References:

[1] Caicedo, A. E.; Ketchersid, R., A trichotomy theorem in natural models of \(AD^+\), (Set Theory and Its Applications. Set Theory and Its Applications, Contemp. Math., vol. 533 (2011), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 227-258, MR 2777751 · Zbl 1245.03079
[2] Foreman, M., A Dilworth decomposition theorem for \(λ\)-Suslin quasi-orderings of R, (Logic, Methodology and Philosophy of Science, VIII. Logic, Methodology and Philosophy of Science, VIII, Moscow, 1987. Logic, Methodology and Philosophy of Science, VIII. Logic, Methodology and Philosophy of Science, VIII, Moscow, 1987, Stud. Logic Found. Math., vol. 126 (1989), North-Holland: North-Holland Amsterdam), 223-244, MR 1034565 · Zbl 0703.03031
[3] Hamkins, J. D., Does \(ZF + AD\) settle the original Suslin hypothesis?, (version: 2017-09-17)
[4] Harrington, L.; Marker, D.; Shelah, S., Borel orderings, Trans. Amer. Math. Soc., 310, 293-302 (1988), MR 965754 · Zbl 0707.03042
[5] Hjorth, G., A dichotomy for the definable universe, J. Symbolic Logic, 60, 1199-1207 (1995), MR 1367205 · Zbl 0844.03029
[6] Jech, T., Non-provability of Souslin’s hypothesis, Comment. Math. Univ. Carolin., 8, 291-305 (1967), MR 0215729 · Zbl 0204.00701
[7] Jech, T., Set Theory, Springer Monographs in Mathematics (2003), Springer-Verlag: Springer-Verlag Berlin, The third millennium edition, revised and expanded, MR 1940513 (2004g:03071) · Zbl 1007.03002
[8] Kanamori, A., The higher infinite, (Springer Monographs in Mathematics (2009), Springer-Verlag: Springer-Verlag Berlin), Large cardinals in set theory from their beginnings, Paperback reprint of the 2003 edition, MR 2731169 · Zbl 1154.03033
[9] Kechris, A. S., The axiom of determinacy implies dependent choices in \(L(R)\), J. Symbolic Logic, 49, 1, 161-173 (1984), MR 736611 · Zbl 0584.03037
[10] Neeman, I., Determinacy in \(L(R)\), (Handbook of Set Theory, Vols. 1-3 (2010), Springer: Springer Dordrecht), 1877-1950, MR 2768701 · Zbl 1198.03057
[11] Schindler, R., Set theory, (Universitext (2014), Springer: Springer Cham), Exploring independence and truth, MR 3243739 · Zbl 1296.03002
[12] Silver, J. H., Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic, 18, 1-28 (1980), MR 568914 · Zbl 0517.03018
[13] Solovay, R. M., A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2), 92, 1-56 (1970), MR 0265151 (42 #64) · Zbl 0207.00905
[14] Solovay, R. M.; Tennenbaum, S., Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2), 94, 201-245 (1971), MR 0294139 · Zbl 0244.02023
[15] Tennenbaum, S., Souslin’s problem, Proc. Natl. Acad. Sci. USA, 59, 60-63 (1968), MR 0224456 · Zbl 0172.29503
[16] Woodin, W. Hugh, AD and the uniqueness of the supercompact measures on \(P_{\omega_1}(\lambda)\), (Cabal Seminar 79-81. Cabal Seminar 79-81, Lecture Notes in Math., vol. 1019 (1983), Springer: Springer Berlin), 67-71, MR 730587 · Zbl 0549.03046
[17] Woodin, W. H., The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, De Gruyter Series in Logic and its Applications, vol. 1 (2010), Walter de Gruyter GmbH & Co. KG: Walter de Gruyter GmbH & Co. KG Berlin, MR 2723878 · Zbl 1203.03059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.