×

Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system. (English) Zbl 07785509

Summary: In this paper, we develop sparse grid discontinuous Galerkin (DG) schemes for the Vlasov-Maxwell (VM) equations. The VM system is a fundamental kinetic model in plasma physics, and its numerical computations are quite demanding, due to its intrinsic high-dimensionality and the need to retain many properties of the physical solutions. To break the curse of dimensionality, we consider the sparse grid DG methods that were recently developed in [W. Guo and Y. Cheng, SIAM J. Sci. Comput. 38, No. 6, A3381–A3409 (2016; Zbl 1353.82064); SIAM J. Sci. Comput. 39, No. 6, A2962–A2992 (2017; Zbl 1379.65077)] for transport equations. Such methods are based on multiwavelets on tensorized nested grids and can significantly reduce the numbers of degrees of freedom. We formulate two versions of the schemes: sparse grid DG and adaptive sparse grid DG methods for the VM system. Their key properties and implementation details are discussed. Accuracy and robustness are demonstrated by numerical tests, with emphasis on comparison of the performance of the two methods, as well as with their full grid counterparts.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
82Dxx Applications of statistical mechanics to specific types of physical systems

Software:

Vador

References:

[1] Alpert, B., A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal., 1, 246-262 (1993) · Zbl 0764.42017
[2] Barth, T., On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems, 69-88 · Zbl 1135.78008
[3] Besse, N.; Latu, G.; Ghizzo, A.; Sonnendrücker, E.; Bertrand, P., A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys., 16, 7889-7916 (2008) · Zbl 1194.83013
[4] Besse, N.; Latu, G.; Ghizzo, A.; Sonnendrüker, E.; Bertrand, P., A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys., 16, 7889-7916 (2008) · Zbl 1194.83013
[5] Birdsall, C. K.; Langdon, A. B., Plasma Physics Via Computer Simulation (1991), Institute of Physics Publishing
[6] Bokanowski, O.; Garcke, J.; Griebel, M.; Klompmaker, I., An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput., 3, 575-605 (2013) · Zbl 1269.65076
[7] Bungartz, H.-J.; Griebel, M., Sparse grids. Acta Numer., 147-269 (2004) · Zbl 1118.65388
[8] Califano, F.; Attico, N.; Pegoraro, F.; Bertin, G.; Bulanov, S. V., Fast formation of magnetic islands in a plasma in the presence of counterstreaming electrons. Phys. Rev. Lett., 23, 5293-5296 (2001)
[9] Califano, F.; Pegoraro, F.; Bulanov, S. V., Impact of kinetic processes on the macroscopic nonlinear evolution of the electromagnetic-beam-plasma instability. Phys. Rev. Lett., 3602-3605 (2000)
[10] Califano, F.; Pegoraro, F.; Bulanov, S. V.; Mangeney, A., Kinetic saturation of the Weibel instability in a collisionless plasma. Phys. Rev. E, 6, 7048-7059 (1998)
[11] Cheng, C. Z.; Knorr, G., The integration of the Vlasov equation in configuration space. J. Comput. Phys., 3, 330-351 (1976)
[12] Cheng, Y.; Christlieb, A. J.; Zhong, X., Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system. J. Comput. Phys., 145-173 (2014) · Zbl 1351.76053
[13] Cheng, Y.; Gamba, I. M.; Li, F.; Morrison, P. J., Discontinuous Galerkin methods for the Vlasov-Maxwell equations. SIAM J. Numer. Anal., 2, 1017-1049 (2014) · Zbl 1307.76051
[14] Cheng, Y.; Gamba, I. M.; Morrison, P. J., Study of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems. J. Sci. Comput., 319-349 (2013) · Zbl 1281.82028
[15] Einkemmer, L., A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions. J. Comput. Phys., 937-951 (2019) · Zbl 1416.65347
[16] Filbet, F.; Sonnendrücker, E., Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun., 3, 247-266 (2003) · Zbl 1196.82108
[17] Garcke, J.; Griebel, M., Sparse Grids and Applications (2013), Springer
[18] Grella, K.; Schwab, C., Sparse discrete ordinates method in radiative transfer. Comput. Methods Appl. Math., 3, 305-326 (2011) · Zbl 1283.35141
[19] Grella, K.; Schwab, C., Sparse tensor spherical harmonics approximation in radiative transfer. J. Comput. Phys., 23, 8452-8473 (2011) · Zbl 1246.65217
[20] Guo, W.; Cheng, Y., A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput., 6, A3381-A3409 (2016) · Zbl 1353.82064
[21] Guo, W.; Cheng, Y., An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput., 6, A2962-A2992 (2017) · Zbl 1379.65077
[22] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1981), McGraw-Hill: McGraw-Hill New York · Zbl 0662.76002
[23] Huot, F.; Ghizzo, A.; Bertrand, P.; Sonnendrüker, E.; Coulaud, O., Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system. J. Comput. Phys., 2, 512-531 (2003) · Zbl 1073.82039
[24] Jacobs, G.; Hesthaven, J. S., Implicit-explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning. Comput. Phys. Commun., 10, 1760-1767 (2009) · Zbl 1197.76081
[25] Kormann, K., A semi-Lagrangian Vlasov solver in tensor train format. SIAM J. Sci. Comput., 4, B613-B632 (2015) · Zbl 1325.76132
[26] Kormann, K.; Sonnendrücker, E., Sparse grids for the Vlasov-Poisson equation, 163-190 · Zbl 1381.82020
[27] Kowitz, C.; Pflüger, D.; Jenko, F.; Hegland, M., The combination technique for the initial value problem in linear gyrokinetics, 205-222
[28] Mangeney, A.; Califano, F.; Cavazzoni, C.; Travnicek, P., A numerical scheme for the integration of the Vlasov-Maxwell system of equations. J. Comput. Phys., 2, 495-538 (2002) · Zbl 1001.78025
[29] Munz, C.-D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voss, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 2, 484-511 (2000) · Zbl 0970.78010
[30] Shen, J.; Yu, H., Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput., 6, 3228-3250 (2010) · Zbl 1233.65094
[31] Shen, J.; Yu, H., Efficient spectral sparse grid methods and applications to high-dimensional elliptic equations II. Unbounded domains. SIAM J. Sci. Comput., 2, A1141-A1164 (2012) · Zbl 1269.65130
[32] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 439-471 (1988) · Zbl 0653.65072
[33] Sircombe, N.; Arber, T., VALIS: a split-conservative scheme for the relativistic 2d Vlasov-Maxwell system. J. Comput. Phys., 13, 4773-4788 (2009) · Zbl 1175.82059
[34] Suzuki, A.; Shigeyama, T., A conservative scheme for the relativistic Vlasov-Maxwell system. J. Comput. Phys., 5, 1643-1660 (2010) · Zbl 1186.82078
[35] Wang, Z.; Tang, Q.; Guo, W.; Cheng, Y., Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys., 244-263 (2016) · Zbl 1349.65636
[36] Widmer, G.; Hiptmair, R.; Schwab, C., Sparse adaptive finite elements for radiative transfer. J. Comput. Phys., 12, 6071-6105 (2008) · Zbl 1147.65095
[37] Yang, H.; Li, F., Discontinuous Galerkin methods for relativistic Vlasov-Maxwell system. J. Sci. Comput., 2-3, 1216-1248 (2017) · Zbl 1382.78023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.