×

A conservative scheme for the relativistic Vlasov-Maxwell system. (English) Zbl 1186.82078

A new scheme for the numerical integration of the 1D2V relativistic Vlasov-Maxwell system is proposed. Assuming that all particles in a cell of the phase space move with the same velocity as that of the particle located at the center of the cell at the beginning of each time step, the system is successfully integrated without any artificial loss of particles. Furthermore, splitting the equations into advection and interaction parts, the method conserves the sum of the kinetic energy of particles and the electromagnetic energy. Three test problems, the gyration of particles, the Weibel instability, and the wakefield acceleration, are solved by using the new scheme. It is confirmed that the scheme can reproduce analytical results of the problems. Especially the tail of the distribution functions where only a tiny fraction of particles reside seems to be solved with considerably high accuracy, while PIC simulations would suffer from large statistical errors there. Though it is dealt with the 1D2V relativistic Vlasov-Maxwell system, the method can also be applied to the 2D3V and 3D3V cases.

MSC:

82D10 Statistical mechanics of plasmas
83A05 Special relativity

References:

[1] Esarey, E.; Sprangle, P.; Krall, J.; Ting, A., Overview of plasma-based accelerator concepts, IEEE Trans. Plasma Sci., 24, 252 (1996)
[2] Sturrock, P. A., Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical, and Laboratory Plasmas (1996), Cambridge Univ. Press: Cambridge Univ. Press New York
[3] Birdsall, C. K.; Langdon, A. B., Plasma Physics Via Computer Simulation (1991), Adam Hilger
[4] Cheng, C. Z.; Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 330 (1976)
[5] Fijalkow, E., A numerical solution to the Vlasov equation, Comput. Phys. Commun., 116, 319 (1999) · Zbl 1019.76035
[6] Nakamura, T.; Yabe, T., Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 120, 122 (1999) · Zbl 1001.82003
[7] Mangeney, A.; Califano, F.; Cavazzoni, C.; Trávníček, P., A Numerical scheme for the integration of the Vlasov-Maxwell system of equations, J. Comput. Phys., 179, 495 (2002) · Zbl 1001.78025
[8] Valentini, F.; Veltri, P.; Mangeney, A., A numerical scheme for the integration of the Vlasov-Poisson system of equations, in the magnetized case, J. Comput. Phys., 210, 730 (2005) · Zbl 1083.82032
[9] Valentini, F.; Trávníček, P.; Califano, F.; Hellinger, P.; Mangeney, A., A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma, J. Comput. Phys., 225, 753 (2007) · Zbl 1343.76051
[10] Matthews, A. P., Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations, J. Comput. Phys., 112, 102 (1994) · Zbl 0801.76057
[11] Suzuki, A.; Shigeyama, T., Detailed analysis of filamentary structure in the Weibel instability, ApJ, 695, 1550 (2009)
[12] Schmitz, H.; Grauer, R., Kinetic Vlasov simulations of collisionless magnetic reconnection, Phys. Plasmas, 13, 092309 (2006)
[13] Besse, N.; Latu, G.; Ghizzo, A.; Sonnendrücker, E.; Bertrand, P., A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system, J. Comput. Phys., 227, 7889 (2008) · Zbl 1194.83013
[14] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equations, J. Comput. Phys., 149, 841 (1999) · Zbl 0934.76073
[15] Besse, N.; Sonnendrücker, E., Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comput. Phys., 191, 341 (2003) · Zbl 1030.82011
[16] Chen, P.; Tajima, T.; Takahashi, Y., Plasma wakefield acceleration for ultrahigh-energy cosmic rays, Phys. Rev. Lett., 89, 161101 (2002)
[17] Lyubarsky, Y., Electron-ion coupling upstream of relativistic collisionless shocks, ApJ, 652, 1297 (2006)
[18] Hoshino, M., Wakefield acceleration by radiation pressure in relativistic shock waves, ApJ, 672, 940 (2008)
[19] Kuramitsu, K.; Sakawa, Y.; Kato, T.; Takabe, H.; Hoshino, M., Nonthermal acceleration of charged particles due to an incoherent wakefield Induced by a large-amplitude light pulse, ApJ, 682, L113 (2008)
[20] Sprangle, P.; Esarey, E.; Ting, A., Nonlinear theory of intense laser-plasma interactions, Phys. Rev. Lett., 41, 4463 (1990)
[21] Ting, A.; Esarey, E.; Sprangle, P., Nonlinear wakefield generation by an intense laser pulse in plasmas, Phys. Fluids B, 2, 1390 (1990)
[22] Califano, F.; Pegoraro, F.; Bulanov, S.; Mangeney, A., Kinetic saturation of the Weibel instability in a collisionless plasma, Phys. Rev. E, 57, 7048 (1998)
[23] Carbone, V.; Marco, R. D.; Valentini, F.; Veltri, P., Wave-particle interactions in collisionless plasmas: the failure of Vlasov approximation in describing the approach to statistical equilibrium, EPL, 78, 65001 (2007) · Zbl 1244.82080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.