×

An iterative generalized quasi-boundary value regularization method for the backward problem of time fractional diffusion-wave equation in a cylinder. (English) Zbl 07780860

Summary: In this paper, we consider the backward problem for a time fractional diffusion-wave equation in a cylinder. The ill-posedness and a conditional stability of the inverse problem are proved. Based on the generalized quasi-boundary value regularization method, we propose an iterative generalized quasi-boundary value regularization method to deal with the inverse problem, and this iterative method has a higher convergence rate. The convergence rates of the regularized solution under an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule are obtained. Numerical examples illustrate the effectiveness and stability of our proposed method.

MSC:

65-XX Numerical analysis
Full Text: DOI

References:

[1] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[2] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Physica A, 284, 1, 376-384 (2000) · doi:10.1016/S0378-4371(00)00255-7
[3] Wyss, W., The fractional diffusion equation, J. Math. Phys., 27, 11, 2782-2785 (1986) · Zbl 0632.35031 · doi:10.1063/1.527251
[4] Berkowitz, B.; Scher, H.; Silliman, SE, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res., 36, 1, 149-158 (2000) · doi:10.1029/1999WR900295
[5] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 1, 749-755 (2002) · Zbl 1001.91033 · doi:10.1016/S0378-4371(02)01048-8
[6] Du, R.; Cao, WR; Sun, ZZ, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 34, 10, 2998-3007 (2010) · Zbl 1201.65154 · doi:10.1016/j.apm.2010.01.008
[7] Kian, Y.; Yamamoto, M., On existence and uniqueness of solutions for semilinear fractional wave equations, Fractional Calculus and Applied Analysis, 20, 1, 117-138 (2017) · Zbl 1362.35323 · doi:10.1515/fca-2017-0006
[8] Chen, A.; Li, CP, Numerical solution of fractional diffusion-wave equation, Numer. Funct. Anal. Optim., 37, 1, 19-39 (2016) · Zbl 1382.65236 · doi:10.1080/01630563.2015.1078815
[9] Wei, T.; Wang, JG, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78, 95-111 (2014) · Zbl 1282.65141 · doi:10.1016/j.apnum.2013.12.002
[10] Tuan, NH; Long, LD; Tatar, S., Tikhonov regularization method for a backward problem for the inhomogeneous time-fractional diffusion equation, Appl. Anal., 97, 5, 842-863 (2018) · Zbl 1404.65146 · doi:10.1080/00036811.2017.1293815
[11] Tuan, NH; Au, V.; Huynh, NL, Regularization of a backward problem for the inhomogeneous time-fractional wave equation, Mathematical Methods in the Applied Sciences, 43, 1, 1-15 (2020) · Zbl 1445.35317
[12] Yang, F.; Pu, Q.; Li, XX, The truncation regularization method for identifying the initial value on non-homogeneous time-fractional diffusion-wave equations, Mathematics, 7, 11, 1007 (2019) · doi:10.3390/math7111007
[13] Han, YZ; Xiong, XT; Xue, XM, A fractional Landweber method for solving backward time-fractional diffusion problem, Comput. Math. Appl., 78, 1, 81-91 (2019) · Zbl 1442.65224 · doi:10.1016/j.camwa.2019.02.017
[14] Yang, SP; Xiong, XT; Nie, Y., Iterated fractional Tikhonov regularization method for solving the spherically symmetric backward time-fractional diffusion equation, Appl. Numer. Math., 160, 1, 217-241 (2021) · Zbl 1467.65090 · doi:10.1016/j.apnum.2020.10.008
[15] Wei, T.; Luo, YH, A generalized quasi-boundary value method for recovering a source in a fractional diffusion-wave equation, Inverse Problem, 38, 4 (2022) · Zbl 07489711 · doi:10.1088/1361-6420/ac50b9
[16] Wang, JG; Ran, YH, An iterative method for an inverse source problem of time-fractional diffusion equation, Inverse Problems in Science and Engineering, 26, 10, 1509-1521 (2018) · Zbl 1428.65035 · doi:10.1080/17415977.2017.1417406
[17] Ma, KY; Prakash, P.; Deiveegan, A., Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation, Chaos, Solitons Fractals, 108, 39-48 (2018) · Zbl 1390.35425 · doi:10.1016/j.chaos.2018.01.003
[18] Yang, F.; Pu, Q.; Li, XX, The fractional Tikhonov regularization methods for identifying the initial value problem for a time-fractional diffusion equation, J. Comput. Appl. Math., 380 (2020) · Zbl 1440.65123 · doi:10.1016/j.cam.2020.112998
[19] Yang, SP; Xiong, XT; Han, YZ, A modified fractional Landweber method for a backward problem for the inhomogeneous time-fractional diffusion equation in a cylinder, Int. J. Comput. Math., 97, 11, 2375-2393 (2020) · Zbl 07476512 · doi:10.1080/00207160.2020.1803297
[20] Wang, JG; Zhou, YB; Wei, T., A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem, Appl. Math. Lett., 26, 7, 741-747 (2013) · Zbl 1311.65123 · doi:10.1016/j.aml.2013.02.006
[21] Crank, J., The Mathematics of Diffusion (1979), Oxford: Oxford University Press, Oxford · Zbl 0427.35035
[22] Jiang, XY; Xu, MY; Qi, HT, The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes, Nonlinear Anal. Real World Appl., 11, 262-269 (2010) · Zbl 1196.37120 · doi:10.1016/j.nonrwa.2008.10.057
[23] Narahari Achar, BN; Hanneken, JW, Fractional radial diffusion in a cylinder, J. Mol. Liq., 114, 1, 147-151 (2004) · doi:10.1016/j.molliq.2004.02.012
[24] Povstenko, YZ, Fractional radial diffusion in a cylinder, J. Mol. Liq., 137, 1, 46-50 (2008) · doi:10.1016/j.molliq.2007.03.006
[25] Hu, XL; Liao, H-L; Liu, FW; Turner, IW, A center box method for radially symmetric solution of fractional subdiffusion equation, Appl. Math. Comput., 257, 467-486 (2015) · Zbl 1339.65120
[26] El-shahed, M., MHD of a fractional viscoelastic fluid in a circular tube, Mechanics Research Communication, 33, 2, 261-268 (2006) · Zbl 1192.76067 · doi:10.1016/j.mechrescom.2005.02.017
[27] Viskanta, R.; Menguc, MP, Radiation heat transfer in combustion systems, Prog. Energy Combust. Sci., 13, 2, 97-160 (1987) · doi:10.1016/0360-1285(87)90008-6
[28] Povstenko, YZ, Solutions to time-fractional diffusion-wave equation in cylindrical coordinates, Adv. Difference Equ., 2011, 2 (2011) · Zbl 1220.35184
[29] Özdemir, N.; Karadeniz, D., Fractional diffusion-wave problem in cylindrical coordinates, Phys. Lett. A, 372, 38, 5968-5972 (2008) · Zbl 1223.26012 · doi:10.1016/j.physleta.2008.07.054
[30] Özdemir, N.; Karadeniz, D.; Iskender, BB, Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A, 373, 2, 221-226 (2009) · Zbl 1227.49007 · doi:10.1016/j.physleta.2008.11.019
[31] Johansson, B.; Lesnic, D.; Reeve, T., A method of fundamental solutions for radially symmetric and axisymmetric backward heat conduction problems, Int. J. Comput. Math., 89, 11, 1555-1568 (2012) · Zbl 1258.65099 · doi:10.1080/00207160.2012.680448
[32] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives fractional differential equations, to methods of their solution an some of their applications (1999), San Diego: Academic Press Inc, San Diego · Zbl 0924.34008
[33] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), Amsterdam: Elsevier Science B.V, Amsterdam · Zbl 1092.45003
[34] Deng, YJ; Liu, ZH, Iteration methods on sideways parabolic equations, Inverse Prob., 25, 9 (2009) · Zbl 1173.35724 · doi:10.1088/0266-5611/25/9/095004
[35] Wei, T.; Zhang, Y., The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Comput. Math. Appl., 75, 10, 3632-3648 (2018) · Zbl 1417.35224 · doi:10.1016/j.camwa.2018.02.022
[36] Sun, ZZ, Numerical Solution for Partial Differential Equations (2005), Beijing: Science Press, Beijing · Zbl 1126.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.