×

The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes. (English) Zbl 1196.37120

A generalized non-local Fick’s law on fractal-dimension is derived. Using modified Fick’s law a time-space fractional diffusion model with a fractional oscillator term is built. The solution is obtained in terms of a Mittag-Leffler function using a finite Hankel integral transformation and Laplace transformation. In addition, numerical simulations are discussed. The results show that the effect range of the time-fractional derivative \(\nu\) on the probability density is greater than that of the fractional oscillator parameter \(\beta\). The effect range of \(\nu\) on a probability density is opposite to that of \(\beta\). This paper provides a new analytical tool to develop fluid mechanics, heat conduction and other engineering sciences.

MSC:

37L99 Infinite-dimensional dissipative dynamical systems
60J65 Brownian motion
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Fetecau, C.; Fetecau, Corina, Starting solutions for motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder, Int. J. Eng. Sci., 44, 788-796 (2006) · Zbl 1213.76014
[2] Fetecau, C.; Hayat, T.; Fetecau, Corina; Ali, N., Unsteady flow of a second grade fluid between two side walls perpendicular to a plate, Nonlinear Anal. RWA (2007) · Zbl 1140.76304
[3] Wang, C. Y., Flow due to a stretching boundary with partial slip— an exact solution of the Navier-Stokes equation, Chem. Eng. Sci., 57, 3745-3747 (2002)
[4] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Willey & Sons · Zbl 0789.26002
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach New York · Zbl 0818.26003
[6] Mandelbrot, B. B., The Fractal Geometry of Nature (1982), Freeman: Freeman New York · Zbl 0504.28001
[7] Tan, W. C.; Xu, M. Y., The impulsive motion of at plate in a generalized second order fluids, Mech. Res. Comm., 29, 3-9 (2002) · Zbl 1151.76368
[8] Khan, M.; Hayat, T.; Asghar, S., Exact solution for MHD flow of a generalized Oldroyd-B fluid with modifed Darcy’s law, Int. J. Eng. Sci., 44, 333-339 (2006) · Zbl 1213.76024
[9] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[10] Xiaoyun, Jiang; Mingyu, Xu, Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered fractal media, Internat. J. Non-Linear Mech., 41, 156-165 (2006)
[11] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7, 1461-1477 (1996) · Zbl 1080.26505
[12] Metzler, R.; Glöckle, W. G.; Nonnenmacher, T. F., Fractional model equation for anomalous diffusion, Physica A, 211, 13-24 (1994)
[13] Gorenflo, R.; Mainardi, F., Random walk models for space-fractional diffusion processes, Fractional Calculus Appl. Anal., 1, 167-191 (1998) · Zbl 0946.60039
[14] Fetecau, C.; Mahmood, A.; Fetecau, Corina; Vieru, D., Some exacts solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder, Comput. Math. Appl. (2008) · Zbl 1165.76306
[15] Fetecau, Corina; Fetecau, C., Decay of a potential vortex in a generalized Oldroyd-B fluid, Appl. Math Comput. (2008) · Zbl 1153.76016
[16] Qi, H. T.; Xu, M. Y., Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd-B model, Acta Mech. Sinica, 23, 463-469 (2007) · Zbl 1202.76017
[17] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37, R161-R208 (2004) · Zbl 1075.82018
[18] Tan, W. C.; Fu, Chaoqi; Fu, Ceji, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Lett., 91, 183901 (2007)
[19] Mingyu, Xu; Wenchang, Tan, Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their applications to modern mechanics, Sci. China Ser. G, 49, 3, 1672-1799 (2006) · Zbl 1109.26005
[20] Chaves, A. S., Afractional diffusion equation to describe Lévy flights, Phy Lett. A, 239, 13-16 (1998) · Zbl 1026.82524
[21] Paradisi, P.; Cesari, R.; Mainardi, F.; Tampieri, F., The fractional Fick’s law for non-local transport processes, Physical A, 293, 130-142 (2000) · Zbl 0978.82080
[22] Zanette, D. H., Macroscopic current in fractional anomalous diffusion, Physica A, 252, 159-164 (1998)
[23] Duderstadt, J. J.; Martin, W. R., Transport Theory (1979), Wiley: Wiley New York · Zbl 0407.76001
[24] Narahari Achar, B. N.; Hanneken, J. W., Dynamics of the fractional oscillator, Physica A, 297, 361-367 (2001) · Zbl 0969.70511
[25] Debnathand, L.; Bhatta, D., Integral Transforms and their Applications (2007), Chapman & Hall /CRC
[26] Narahari Achar, B. N.; Hanneken, J. W., Fractional radical diffusion in a cyllinder, J. Molecular Liquids, 114, 147-151 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.