×

Operators \(a, B\) for which the Aluthge transform \(\widetilde{AB}\) is a generalised \(n\)-projection. (English) Zbl 07780355

Summary: A Hilbert space operator \(A\in \mathcal{B}(H)\) is a generalised \(n\)-projection, denoted \(A\in (G-n-P)\), if \({A^*}^n=A\). \((G-n-P)\)-operators \(A\) are normal operators with finitely countable spectra \(\sigma(A)\), subsets of the set \(\{0\}\cup\{\sqrt[n+1]{1}\} \). The Aluthge transform \(\tilde{A}\) of \(A\in \mathcal{B}(H)\) may be \((G-n-P)\) without \(A\) being \((G-n-P)\). For doubly commuting operators \(A, B\in \mathcal{B}(H)\) such that \(\sigma(AB)=\sigma(A)\sigma(B)\) and \(\|A\|\|B\|\leq \left\|\widetilde{AB}\right\|\), \(\widetilde{AB}\in (G-n-P)\) if and only if \(A=\left\|\tilde{A}\right\|(A_{00}\oplus(A_0\oplus A_u))\) and \(B=\left\|\tilde{B}\right\|(B_0\oplus B_u)\), where \(A_{00}\) and \(B_0\), and \(A_0\oplus A_u\) and \(B_u\), doubly commute, \(A_{00}B_0\) and \(A_0\) are 2 nilpotent, \(A_u\) and \(B_u\) are unitaries, \(A^{*n}_u=A_u\) and \(B^{*n}_u=B_u\). Furthermore, a necessary and sufficient condition for the operators \(\alpha A, \beta B, \alpha \tilde{A}\) and \(\beta \tilde{B}, \alpha=\frac{1}{\left\|\tilde{A}\right\|}\) and \(\beta=\frac{1}{\left\|\tilde{B}\right\|} \), to be \((G-n-P)\) is that \(A\) and \(B\) are spectrally normaloid at \(0\).

MSC:

47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
47A80 Tensor products of linear operators
Full Text: DOI

References:

[1] J. K. Baksalary and X. J. Liu, An alternative characterization of generalized projectors, Linear Algebra Appl. 388 (2004), 61-65. https://doi.org/10.1016/j.laa.2004.01.010 · Zbl 1081.15018 · doi:10.1016/j.laa.2004.01.010
[2] B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1055-1061. https://doi.org/10.1090/S0002-9939-98-04218-X · Zbl 0890.47004 · doi:10.1090/S0002-9939-98-04218-X
[3] A. Brown and C. M. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. https://doi.org/10.2307/2035080 · Zbl 0141.32202 · doi:10.2307/2035080
[4] J. J. Buoni and J. D. Faires, Ascent, descent, nullity and defect of products of operators, Indiana Univ. Math. J. 25 (1976), no. 7, 703-707. https://doi.org/10.1512/iumj.1976. 25.25054 · Zbl 0324.47003 · doi:10.1512/iumj.1976.25.25054
[5] H. K. Du and Y. Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005), 313-318. https://doi.org/10.1016/j.laa.2004.11.027 · Zbl 1067.47001 · doi:10.1016/j.laa.2004.11.027
[6] B. P. Duggal and I. H. Kim, Products of generalized n-projections, Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2021.2002249 · Zbl 07820058 · doi:10.1080/03081087.2021.2002249
[7] J. Groß and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474. https://doi.org/10.1016/S0024-3795(96)00541-1 · Zbl 0887.15024 · doi:10.1016/S0024-3795(96)00541-1
[8] H. G. Heuser, Functional Analysis, translated from the German by John Horváth, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1982. · Zbl 0465.47001
[9] L. Lebtahi and N. Thome, A note on k-generalized projections, Linear Algebra Appl. 420 (2007), no. 2-3, 572-575. https://doi.org/10.1016/j.laa.2006.08.011 · Zbl 1108.47001 · doi:10.1016/j.laa.2006.08.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.