×

Generalized and hypergeneralized projectors. (English) Zbl 0887.15024

A complex \(n\times n\) matrix \(A\) satisfying \(A=A^3\), \(A=A^4\), \(A^2=A^*\) (conjugate transpose) or \(A^2=A^+\) (Moore-Penrose inverse) is called tripotent, quadripotent, generalized projector or hypergeneralized projector, respectively. The authors give a series of characterizations, e.g. for normal quadripotent and quadripotent matrices \(A\) satisfying range \(A=\) range \(A^*\). Conditions for the sum, difference and product of (hyper-)generalized projectors to be a mapping of the same kind are given.
Reviewer: H.Havlicek (Wien)

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
15A09 Theory of matrix inversion and generalized inverses
Full Text: DOI

References:

[1] Baksalary, J. K.; Pukelsheim, F.; Styan, G. P.H., Some properties of matrix partial orderings, Linear Algebra Appl., 119, 57-87 (1989) · Zbl 0681.15005
[2] Ben-Israel, A.; Greville, T. N.E., Generalized Inverses: Theory and Applications (1974), Wiley: Wiley New York · Zbl 0305.15001
[3] Campbell, S. L.; Meyer, C. D., Generalized Inverses of Linear Transformations (1979), Pitman: Pitman London · Zbl 0417.15002
[4] Erdelyi, I., Normal partial isometries closed under multiplication on unitary spaces, Lincei Rend. Sci. Fis. Mat. e Nat., XLIV, 186-190 (1968) · Zbl 0164.03103
[5] J. Groβ, J. Hauke, and A. Markiewicz, Characterizations of partial orderings via a new preordering, Linear Algebra Appl., submitted for publication.; J. Groβ, J. Hauke, and A. Markiewicz, Characterizations of partial orderings via a new preordering, Linear Algebra Appl., submitted for publication.
[6] Hartwig, R. E.; Spindelböck, K., Matrices for which \(A^∗ and A^†\) commute, Linear and Multilinear Algebra, 12, 241-256 (1984) · Zbl 0525.15006
[7] Hartwig, R. E.; Styan, G. P.H., On some characterizations of the “star” partial ordering for matrices and rank subtractivity, Linear Algebra Appl., 82, 145-161 (1986) · Zbl 0603.15001
[8] Hartwig, R. E.; Styan, G. P.H., Partially ordered idempotent matrices, (Pukkila, T.; Puntanen, S., Proceedings of the Second International Tampere Conference in Statistics (1987)), 361-383
[9] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge U.P.,: Cambridge U.P., Cambridge · Zbl 0576.15001
[10] Rao, C. R.; Mitra, S. K., Generalized Inverse of Matrices and its Applications (1971), Wiley: Wiley New York · Zbl 0236.15004
[11] Styan, G. P.H.; Hartwig, R. E., The pyramid decomposition and singular values (1986), unpublished report
[12] Werner, H. J., A closed form formula for the intersection of two complex matrices under the star order, Linear Algebra Appl., 140, 13-30 (1990) · Zbl 0717.15005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.