×

Periodicity for subquotients of the modular category \(\mathcal{O}\). (English) Zbl 07773328

Let \(U\) be the distribution algebra of a reductive algebraic group over a field of characteristic \(p > 0\), with triangular decomposition \(U \cong U^+ \otimes U^0 \otimes U^-\). This article is concerned with the structure of the category \(\mathcal{O}\) of locally \(U^+\)-finite \(U\)-modules that admit a weight space decomposition. For every locally closed set \(K\) of weights, there is a Serre subquotient category \(\mathcal{O}_{[K]}\) of \(\mathcal{O}\) with simple objects indexed by \(K\), and motivated by Steinberg’s tensor product theorem, the main result of the article establishes a periodicity property of these subquotient categories. Namely, if \(l > 0\) such that \(K \cap ( K - p^l ) \cdot \nu = \varnothing\) for all weights \(\nu > 0\) then \(\mathcal{O}_{[K]}\) is equivalent to \(\mathcal{O}_{[ K + p^l \cdot \gamma ]}\) for all dominant weights \(\gamma\). The equivalence is induced by taking tensor products with the \(l\)-fold Frobenius twist of the simple \(U\)-module \(L(\gamma)\) of highest weight \(\gamma\). The author also states and proves other basic properties of the category \(\mathcal{O}\), such as the existence of Krull-Remak-Schmidt decompositions, the existence of projectives in truncated subcategories, a BGGH-reciprocity, and additional results on modules admitting a Verma flag.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
20G15 Linear algebraic groups over arbitrary fields

References:

[1] H. H. Andersen, BGG categories in prime characteristics, arxiv:2106.00057 (2021). · Zbl 1522.17016
[2] И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, Об одной категории 𝔤-модуль, Φункц. анализ и его прил. 10 (1976), вып. 2, 1-8. Engl. transl.: J. Bernshtein, I. M. Gel’fand, S. I. Gel’fand, Category of 𝔤-modules, Functional. Anal. and its Appl. 10 (1976), no. 2, 87-92. · Zbl 0353.18013
[3] C. Chevalley, Certains schémas de groupes semi-simples, Séminaire Bourbaki (1960-1961), 2e éd., Vol. 6, Paris, 1961, pp. 219-234. · Zbl 0125.01705
[4] Deodhar, VV; Gabber, O.; Kac, VG, Structure of some categories of representations of infinite-dimensional Lie algebras, Adv. in Math., 45, 92-116 (1982) · Zbl 0491.17008 · doi:10.1016/S0001-8708(82)80014-5
[5] Fiebig, P., The combinatorics of category 𝒪 over symmetrizable Kac-Moody algebras, Transform. Groups, 11, 29-49 (2006) · Zbl 1122.17016 · doi:10.1007/s00031-005-1103-8
[6] Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France, 90, 323-448 (1962) · Zbl 0201.35602 · doi:10.24033/bsmf.1583
[7] Humphreys, JE, Modular representations of classical Lie algebras and semi-simple groups, J. of Algebra, 19, 51-79 (1971) · Zbl 0219.17003 · doi:10.1016/0021-8693(71)90115-3
[8] Humphreys, JE, Representations of Semisimple Lie Algebras in the BGG Category 𝒪, Graduate Studies in Mathematics (2008), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1177.17001
[9] J. C. Jantzen, Representations of Algebraic Groups, 2nd edition, Math. Surveys and Monogr., Vol. 107, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1034.20041
[10] B. Kostant, Groups over ℤ, Proc. Sympos. Pure Math., Vol. 9, Amer. Math. Soc., Providence, RI, 1966, 90-98. · Zbl 0199.06903
[11] Rocha-Caridi, A.; Wallach, NR, Projective modules over graded Lie algebras, Math. Zeitschrift, 180, 151-177 (1982) · Zbl 0467.17006 · doi:10.1007/BF01318901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.