×

BGG categories in prime characteristics. (English) Zbl 1522.17016

The BGG-category \(\mathcal O\) for a semisimple complex Lie algebra \(\mathfrak g\) has been studied intensively ever since it was introduced by Bernstein, Gelfand and Gelfand. However, there are very few literature about BGG-categories over fields of characteristic \(p>0\).
Let \(\mathfrak g\) be a simple complex Lie algebra. H. H. Anderson studies the BGG category \(\mathcal O_q\) for the quantum group \(U_q(\mathfrak g)\) with \(q\) being a root of unity in a field \(K\) of characteristic \(p >0\). He first considers the simple modules in \(\mathcal O_q\) and proves a Steinberg tensor product theorem for them. This result reduces the problem of determining the corresponding irreducible characters to the same problem for a finite subset of finite dimensional simple modules. Then the author investigates the Verma modules in \(\mathcal O_q\) more closely. Except for the special Verma module, which has highest weight \(-\rho\), they all have infinite length. Anderson shows that each Verma module has a certain finite filtration with an associated strong linkage principle. The special Verma module turns out to be both simple and projective/injective. This leads to a family of projective modules in \(\mathcal O_q\), which are also tilting modules. He proves a reciprocity law, which gives a precise relation between the corresponding family of characters for indecomposable tilting modules and the family of characters of simple modules with antidominant highest weights. All these results are of particular interest when \(q = 1\).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T05 Hopf algebras and their applications
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] Achar, P.; Makisumi, S.; Riche, S.; Williamson, G., Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc., 32, 261-310 (2019) · Zbl 1450.20011 · doi:10.1090/jams/905
[2] Andersen, HH, Tensor products of quantized tilting modules, Comm. Math. Phys., 149, 149-159 (1992) · Zbl 0760.17004 · doi:10.1007/BF02096627
[3] Andersen, HH, Quantum Groups at roots of \(\pm 1\), Comm. Algebra, 24, 3269-3282 (1996) · Zbl 0884.17006 · doi:10.1080/00927879608825749
[4] Andersen, H. H.: A sum formula for algebraic groups (Proc. of conference in honor of D. Buchsbaum, Roma 1998). J. Pure Appl. Algebra 152, 17-40 (2000) · Zbl 0981.20032
[5] Andersen, HH, \(p\)-filtrations and the Steinberg module, J. Algebra, 244, 664-683 (2001) · Zbl 0989.20033 · doi:10.1006/jabr.2000.8745
[6] Andersen, HH, The strong linkage principle for quantum groups at roots of 1, J. Alg., 260, 2-15 (2003) · Zbl 1043.17005 · doi:10.1016/S0021-8693(02)00618-X
[7] Andersen, HH; Mazorchuk, V., Category O for quantum groups, Euro. Math. Soc. J., 17, 2, 405-431 (2015) · Zbl 1393.17025 · doi:10.4171/JEMS/506
[8] Andersen, HH; Polo, P.; Wen, K., Representations of quantum algebras, Invent. Math., 104, 1-59 (1991) · Zbl 0724.17012 · doi:10.1007/BF01245066
[9] Andersen, H.H., Wen, K.: Representations of quantum algebras. The mixed case. J. Reine Angew. Math. 427, 35-50 (1992) · Zbl 0771.17010
[10] Bernstein, I.; Gelfand, I.; Gelfand, S., A certain category of g-modules, Funkcional. Anal. i Prilozen., 10, 2, 1-8 (1976)
[11] Bendel, CP; Nakano, DK; Pillen, C.; Sobaje, P., Counterexamples to the Tilting and (p, r)-Filtration Conjectures, J. Reine Angew. Math, 767, 193-202 (2020) · Zbl 1477.20080 · doi:10.1515/crelle-2019-0036
[12] Bendel, C.P., Nakano, D.K., Pillen, C., Sobaje, P.: On Donkin’s tilting module conjecture i: lowering the prime arXiv:2103.14164
[13] Curtis, C., Representations of Lie algebras of classical types with applications to linear groups, J. Math. Mech., 9, 307-326 (1960) · Zbl 0089.25302
[14] Donkin, S., On tilting modules for algebraic groups, Math. Z., 212, 39-60 (1993) · Zbl 0798.20035 · doi:10.1007/BF02571640
[15] Doty, S., The strong linkage principle, Amer. J. Math., 111, 135-141 (1989) · Zbl 0668.20035 · doi:10.2307/2374483
[16] Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. VI. Quantization of generalized Kac-Moody algebras. Transform. Groups 13(3-4), 527-539 (2008) · Zbl 1191.17004
[17] Fiebig, P.: Periodicity of irreducible modular and quantum characters arXiv:2102.09865
[18] Finkelberg, M.: Fusion categories. Ph.D. Thesis, Harvard University. (1993), 50 pp · Zbl 0860.17040
[19] Franklin, J., Homomorphisms between Verma Modules in Characteristic \(p\), J. Alg., 112, 58-88 (1988) · Zbl 0644.17003 · doi:10.1016/0021-8693(88)90132-9
[20] Frisk, A.; Mazorchuk, V., Regular strongly typical blocks of \({\cal{O}}_q\), Comm. Math. Phys., 291, 2, 533-542 (2009) · Zbl 1269.17005 · doi:10.1007/s00220-009-0799-z
[21] Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category O. Graduate Studies in Math. Vol. 94. American Mathematical Society, Providence, RI (2008) · Zbl 1177.17001
[22] Jantzen, J. C.: Lectures on quantum groups, Graduate Studies in Mathematics, Volume 6 , 266 pp, (1996) · Zbl 0842.17012
[23] Jantzen, J.C. : Representations of Algebraic Groups, Mathematical Surveys and Monographs 107, Second edition, American Mathematical Society (2003) · Zbl 1034.20041
[24] Kashiwara, M.; Tanisaki, T., Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J., 77, 21-62 (1995) · Zbl 0829.17020 · doi:10.1215/S0012-7094-95-07702-3
[25] Kashiwara, M., Tanisaki, T.: Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, II. Non-integral case, Duke Math. J. 84, 771-813 (1996) · Zbl 0929.17027
[26] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53, 165-184 (1979) · Zbl 0499.20035
[27] Lusztig, G.: Modular representations and quantum groups. Classical groups and related topics (Beijing,: Contemp. Math. 82(1989), 59-77 (1987) · Zbl 0665.20022
[28] Lusztig, G., Quantum groups at roots of \(1\), Geom. Ded., 35, 89-114 (1990) · Zbl 0714.17013 · doi:10.1007/BF00147341
[29] Riche, S., Williamson, G.: Riche, S., Williamson, G.: A simple character formula, arXiv:1904.08085 · Zbl 1514.20183
[30] Ryom-Hansen, S., A q-analogue of Kempf’s vanishing theorem, Moscow Math. J., 3, 173-187 (2003) · Zbl 1062.17013 · doi:10.17323/1609-4514-2003-3-1-173-187
[31] Sobaje, P.: On character formulas for simple and tilting modules. Adv. Math. 369, 107172, 8 pp (2020) · Zbl 1512.20165
[32] Steinberg, R., Representations of algebraic groups, Nagoya Math. J., 22, 33-56 (1963) · Zbl 0271.20019 · doi:10.1017/S0027763000011016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.